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Recap: Orderings, cardinality

an order is a binary relation which is transitive and additionally:

weak order strong order

reflexive irreflexive
anti-symmetric asymmetric

if an order (weak or strong) is also connected (i.e. every distinct element in A is related to
another in an ordered pair) then it is a total or linear order
the cardinality of a set = the number of members/elements inside that set

(1 a. X={ab,c}

b. |X|=3
if sets X and Y are equivalent (one-to-one correspondence), then they are also of the same
size; common notation: X ~ Y

equal vs. equivalence: two sets are equal iff they have the same members; set equivalence
has to do with the number of members
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Recap: Formal systems

a formal system consists of:

1 anon-empty set of primitives: the things/objects we are interested in
investigating further

2 aset of statements, called axioms, about those primitives

3 away to reason, i.e. make further statements from these axioms

we have an intuitive understanding of which reasoning is valid and
which is not

if we accept the truth of the premise of a valid argument, we cannot
deny its consequence

within formal languages we separate between form and content
syntax:
properties of expressions of the system itself, such as its primitives,
axioms, rules of inference
semantics:
relations between the system and its models or interpretations
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Recap: Statement logic
we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements. J

(2) Basic expressions of statement logic

paquassplvp”w"

(3) Syntax of statement logic
a. An atomic statement is a well-formed formula.
b. If ¢ is a well-formed formula, then (—¢) is a well-formed formula.

c. If ¢ and ¢ are well-formed formulas, then (¢ A ¥), (¢ V ¥), (¢ — ), and
(¢ < 9) are well-formed formulas.

d. Nothing else is a formula.
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Recap: Statement logic

we can write down the semantic rules like the syntactic rules
read [ JM as interpreted in relation to model M

(4) Semantics of statement logic

If ¢ is a formula, then [[(—wﬁ)]]M = 1iff [[(/)]]M =0.

a.
b. If ¢ and v are formulas, then [(¢ A 9)[M = 1iff both [¢]M = 1and []" = 1.
c. If ¢ and 1 are formulas, then [(¢ V )M = 1iff at least one of [¢]V, [y]M = 1.
d. If ¢ and 1 are formulas, then [(¢ — )M = 1iff [¢]" = 0 or [/]" = 1.
e. If ¢ and ¢ are formulas, then [(¢ «> )M = 1iff [p]M = [¥]M.
p (—p)
(5) Truth table for negation: 1 0
0 1
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Recap: Statement logic

we can write down the semantic rules like the syntactic rules
read [ JM as interpreted in relation to model M

(6) Semantics of statement logic

a.
b.

C.

p q (pPNq)

1 1 1
(7) Truth table for conjunction: 10 0

0 1 0

0 0 0

If ¢ is a formula, then [(—¢)]™ = 1iff [¢]" = o.

If ¢ and 1 are formulas, then [(¢ A )M = 1iff both [¢]M = 1and [/]" = 1.
If ¢ and 1 are formulas, then [(¢ V @)™ = 1 iff at least one of [¢]V, [¢]M = 1.
If ¢ and 1 are formulas, then [(¢ — )M = 1iff [¢]" = 0 or [/]" = 1.

If ¢ and 1 are formulas, then [(¢ <> )M = 1iff [¢]" = [y]M.
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Recap: Statement logic

we can write down the semantic rules like the syntactic rules
read [ JM as interpreted in relation to model M

(8) Semantics of statement logic

a.
b.

C.

p q (pPVq)
1 1

(9) Truth table for disjunction: 10 1
0 1 1
(V] 0

If ¢ is a formula, then [(—¢)]™ = 1iff [¢]" = o.

If ¢ and 1 are formulas, then [(¢ A )M = 1iff both [¢]M = 1and [/]" = 1.
If ¢ and 1 are formulas, then [(¢ V @)™ = 1 iff at least one of [¢]V, [¢]M = 1.
If ¢ and 1 are formulas, then [(¢ — )M = 1iff [¢]" = 0 or [/]" = 1.

If ¢ and 1 are formulas, then [(¢ <> )M = 1iff [¢]" = [y]M.
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Recap: Statement logic

we can write down the semantic rules like the syntactic rules
read [ JM as interpreted in relation to model M

(10)  Semantics of statement logic

(1

a
b.

C.

p q (pP—4q

1 1 1
Truth table for conditional: 1 0 0

0 1 1

0 0 1

If ¢ is a formula, then [(—¢)]™ = 1iff [¢]" = o.

If ¢ and 1 are formulas, then [(¢ A )M = 1iff both [¢]M = 1and [)]" = 1.
If ¢ and 1 are formulas, then [(¢ V 1)) = 1 iff at least one of [¢]™, [¢]M = 1.
If ¢ and 1 are formulas, then [(¢ — )M = 1iff [¢]" = 0 or [/]" = 1.

If ¢ and 1 are formulas, then [(¢ <> )M = 1iff [¢]M = [¢]M.

Statement Logic I Session 7 December 12"’, 2024 8/30



Recap: Statement logic

we can write down the semantic rules like the syntactic rules
read [ JM as interpreted in relation to model M

(12)  Semantics of statement logic

(13)

a
b.

C.

p q (peq)

1 1 1
Truth table for biconditional: 1 0 0

0 1 0

0 0 1

If ¢ is a formula, then [(—¢)]™ = 1iff [¢]" = o.

If ¢ and 1 are formulas, then [(¢ A )M = 1iff both [¢]M = 1and [)]" = 1.
If ¢ and 1 are formulas, then [(¢ V 1)) = 1 iff at least one of [¢]™, [¢]M = 1.
If ¢ and 1 are formulas, then [(¢ — )M = 1iff [¢]" = 0 or [/]" = 1.

If ¢ and 1 are formulas, then [(¢ <> )M = 1iff [¢]M = [¢]M.
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Computing complex truth values

so far, we’ve looked at truth tables for expressions that consist of
maximally two atomic statements

but a truth table provides a systematic method to compute the truth
value of any expression in statement logic

the number of rows in a truth table depends on the number of atomic
statements: every logical combination has to show up

if an expression has n atomic statements, then the truth table will have
2" rows

why 2? ... because we have 2 truth values

so let us compute the truth values of (depending on the truth values of
the atomic statements p, g, and r):

(14) ((pAq) = (=(pVr))
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Computing complex truth values

so let us compute the truth values of:

(15) ((pAq) = (=(pVr))

(16)

p g ri(prg) | (pvr)|~(pVr) | ((PAq)—= (=(pVr))
1T 1 1 1 1 0 0
1T 1 0 1 1 0 0
1T 0 1 0 1 0 1
1T 0 O 0 1 0 1
0o 1 1 0 1 0 1
0 1 0 0 0 1 1
0o 0 1 0 1 0 1
0 0 O 0 0 1 1
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o last week, we said that the following holds:

(17) (p<q)=Up— g N (g—p)

© prove it!



© last week, we said that the following holds:

(18) (p+=q)=(p— 9 A(g—p)

© prove it!

(19)
p g (peq)
11 1
10 0
0 1 0
0 0 1

(20)
p g (p~q9 (9g—p) (P9 A(g—p)
11 1 1 1
10 0 1 0
0 1 1 0 0
0 0 1 1 1




Tautologies

a (complex) statement is called a logical tautology iff the final column in its
truth table contains only the values 1/True, regardless of what the truth values
of its atomic statements are

a tautological statement is true simply because of the meaning of the logical
connective(s) in it: this is why the meanings of the individual atomic
statements in it don’t matter

another way to express this would be to say that a tautological statement is
always true

(21) example of a logical tautology:

(p—p)
p (p—p)
1 1
0 1

Statement Logic I Session 7 December 12”’, 2024 14/30



Contradictions

a (complex) statement is called a logical contradiction iff the final column of its
truth table only contains the values 0/False, regardless of what the truth values
of its atomic statements are

similarly to a tautology, a contradictory statement is false simply because of the
meaning of the logical connective(s) in it: this is why the meanings of the
individual atomic statements in it don’t matter

a logically contradictory statement is always false

(22) example of a logical contradiction:
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Contingencies

an important property of logical tautologies and logical contradictions is that the truth
values of the atomic statements in them simply don’t matter

all overall truth values (final column) are either always 1 (tautologies) or always 0
(contradictions)

all other statements, with both 1/True and 0/False in the final column of their truth table
are called logical contingencies

the idea is that the truth of these statements is contingent (i.e. dependent) on the truth of
the atomic statement(s) contained in them

most of the examples (involving both complex and atomic statements) we’ve seen so far
have been logical contingencies

(23) example of a contingency:

((pVaq)—q)

p g (pvg ((PVg —4q)
1 1 1 1

1 0 1 0

0 1 1 1

0 0 0 1
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Exercise

among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p—(q—p))
b. (pVq)
c. (=(pV(=p))

say which is which by drawing truth tables for each of the expressions
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Exercise

among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p—(q—p))
b. (pVq)
c. (=(pV(=p))

say which is which by drawing truth tables for each of the expressions
(p — (g = p)) is a tautology!

(25)
p g (g—=p) (p—(qg—p)
1 1 1 1
1 0 1 1
0 1 0 1
0 0 1 1
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Exercise

among the three complex expressions below, one is a logical tautology, one is a

logical contradiction, and one is a logical contingency

(24) a. (p—(q—p))

b. (pVp)

c. (=(pVv(=p)))

say which is which by drawing truth tables for each of the expressions

(pV q) is a contingency!

(26)

p p (pPVp)
1 1 1
00 0
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Exercise

among the three complex expressions below, one is a logical tautology, one is a

logical contradiction, and one is a logical contingency

(24) a.
b.

C.

(p— (g —p))
(pVp)
(=(p Vv (=p)))

say which is which by drawing truth tables for each of the expressions
(=(pV (—p))) is a contradiction!

(7)

Statement Logic I
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reductio ad absurdum

another way of reasoning (one without truth tables), i.e., proving that
some statement is a tautology, is called reductio ad absurdum

the reasoning works like this (we have done this before):

1 assume that the statement is in fact not a logical tautology, i.e. you
assume that one of its possible truth values is 0

2 then reason “backwards” from this assumption to compute the possible
values of the atomic statements in this complex expression

3 if, based on this assumption, you run into a contradiction, then your
assumption was wrong and the statement is indeed a tautology

4 if, on the other hand, you don’t run into a contradiction, then your
assumption was correct after all, and the complex statement is not a
logical tautology
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reductio ad absurdum: example

here is an example: suppose we want to prove that (p — (¢ — p)) is a
tautology (see above)
1 assume that (p — (g — p)) is false:

(28) (p—(qg—p)
0

2 reasoning backwards from this assumption, we know that the only way the whole
expression can be 0 is if the antecedent is 1 and the consequent is 0

(29) (p—(g—p)
10 0

3 now we have to give every instance of p the same value (p is a constant)
30) (p—(9—p)
10 01

4 contradiction: there is no way a conditional ((¢ — p)) can be false if the
consequent (p) is true (this holds independent of the truth value of q)

5 since our assumption that (p — (g — p)) is false has led us to a contradiction,
our assumption must be false, hence (p — (¢ — p)) is a logical tautology
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reductio ad absurdum: exercise

try this line of reasoning with the next example

G1) (pV(=p))

1 assume that (p vV (—p)) is false:

32 (pVv(=p)
0

2 reasoning backwards from this assumption, we know that the only way the whole
expression can be 0 is if both disjuncts are 0

33) (pV(-p)
00 0

3 a contradiction: there is no way p can be 0 and —p can be 0
4 since our assumption that (p v (—p)) is false has led us to a contradiction, our
assumption must be false, hence (p VV (—p)) is a logical tautology
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Logical equivalence

if a biconditional statement is a logical tautology, then the two constituent
statements on either side of the biconditional arrow are logically equivalent
in other words: a biconditional between p and q is True precisely if they both
are True or if they both are False, hence p and ¢ always need to give back the
same truth value for logical equivalence

p q (peq)

1 1 1
4 |1 o 0

0 1 0

0 0 1

to denote logical equivalence between two arbitrary expressions P and Q
(atomic or complex) we write P < Q
we have already proven a logical equivalence:

@35 (perqge((p—>9n(g—p)
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¢ let us prove another logical equivalence!

36) (=(pVq)) < ((=p) A (=9)



Logical equivalence: exercise
let us prove another logical equivalence!

36) (=(pVq) = ((=p) A (=9))

(37)
p q (pvg (=(pVva)
1 1 1 0
1 0 1 0
0 1 1 0
0 0 0 1

(38)
p q (=p) (mq) ((=p)A(—9)
1 1 0 0 0
1 0 0 1 0
0 1 1 0 0
0 0 1 1 1
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Logical equivalence

regardless of the truth values of the atomic statements p and g, the expressions
(=(pV q)) and ((—p) A (—q)) always have the same truth value

since two logically equivalent statements have exactly the same truth values in
every row of the truth table, one can substitute one for the other in a larger
expression E, and vice versa, without changing the truth value of E

so we can subtitute ((—p) A (—q)) with (=(p V q)) (and vice versa)

another example:

(39) pe(pAp)
a. ((pAp)Va)
b. substitution: (pV q)

the following laws of statement logic define various logic equivalences
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Laws of Statement logic

(40) Idempotent Laws:
a. (PVP)& P

(44) Distributive Laws:
b. (PAP)= P

a. (PV(QAR)) < ((PVQ)A(PVR))

(41) Commutative Laws: b. (PA(QVR)) < (PAQ)V(PAR))

a. (PvQ)<(QVvP)

45) C | L :
b (PAQ) & (QAP) (45) omplement Laws

a. (PV(=P)) < True
b. (—|(—\P)) & P
c. (PA(=P)) < False

(42) Associative Laws:
a. ((PVvQVR)<(PV(QVR)
b. (PAQYAR)< (PA(QAR))
(43) Identity Laws:
a. (PV False) < P
b. (P A False) < False
(PV True) & True
d. (PATrue) & P

(46) DeMorgan’s Laws:
a. (=(PvV Q) ((=P)A(-Q)
b. (=(PA Q) ((-P)V(-Q)

o
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(47) Conditional Laws: (48) Biconditional Laws:
a (P>Q <& ((-P)VQ a (PoQe(PoQA(Q—P)
b. (P— Q) & ((-Q — (=P)) b. (P Q) & (-PIN-Q)V(PAQ))



Logical consequence

if a conditional statement is a logical tautology, we say that the consequent is a logical
consequence of the antecedent (antecedent — consequent)

alternatively, we say that the antecedent logically implies the consequent, and we write
thisas P = Q

(49) example of a logical consequence:

(((p—=q9)Nq)—q)

p g (p—=q ((p—9Arqg (((P—9Arq)—q)
1 1 1 1

10 0 1

0 1 1 1 1

0 0 1 0 1

the rightmost column shows the conditional statement of which we want to find out if its
consequent q is a logical consequence of the antecedent ((p — ¢) A q)

since every value in this column is True, the conditional is a tautology, and hence q is also
a logical consequence of ((p — q) A q)

so we write: ((p = q) A q) = g
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