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Recap: Orderings, cardinality

• an order is a binary relation which is transitive and additionally:

weak order
• reflexive
• anti-symmetric

strong order
• irreflexive
• asymmetric

• if an order (weak or strong) is also connected (i.e. every distinct element in A is related to
another in an ordered pair) then it is a total or linear order
• the cardinality of a set = the number of members/elements inside that set

(1) a. X = {a, b, c}
b. |X | = 3

• if sets X and Y are equivalent (one-to-one correspondence), then they are also of the same
size; common notation: X ∼ Y
• equal vs. equivalence: two sets are equal i� they have the same members; set equivalence

has to do with the number of members
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Recap: Formal systems

• a formal system consists of:
1 a non-empty set of primitives: the things/objects we are interested in

investigating further
2 a set of statements, called axioms, about those primitives
3 a way to reason, i.e. make further statements from these axioms

• we have an intuitive understanding of which reasoning is valid and
which is not
• if we accept the truth of the premise of a valid argument, we cannot

deny its consequence
• within formal languages we separate between form and content

• syntax:
properties of expressions of the system itself, such as its primitives,
axioms, rules of inference

• semantics:
relations between the system and its models or interpretations
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Recap: Statement logic

• we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements.

(2) Basic expressions of statement logic

a p, q, r, s, p′, p′′, . . .

(3) Syntax of statement logic

a. An atomic statement is a well-formed formula.

b. If φ is a well-formed formula, then (¬φ) is a well-formed formula.

c. If φ and ψ are well-formed formulas, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are well-formed formulas.

d. Nothing else is a formula.
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Recap: Statement logic

• we can write down the semantic rules like the syntactic rules
• read J KM as interpreted in relation to model M

(4) Semantics of statement logic

a. If φ is a formula, then J(¬φ)KM = 1 i� JφKM = 0.

b. If φ and ψ are formulas, then J(φ ∧ ψ)KM = 1 i� both JφKM = 1 and JψKM = 1.

c. If φ and ψ are formulas, then J(φ ∨ ψ)KM = 1 i� at least one of JφKM, JψKM = 1.

d. If φ and ψ are formulas, then J(φ→ ψ)KM = 1 i� JφKM = 0 or JψKM = 1.

e. If φ and ψ are formulas, then J(φ↔ ψ)KM = 1 i� JφKM = JψKM.

(5) Truth table for negation:
p (¬p)
1 0
0 1

..
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Recap: Statement logic

• we can write down the semantic rules like the syntactic rules
• read J KM as interpreted in relation to model M

(6) Semantics of statement logic

a. If φ is a formula, then J(¬φ)KM = 1 i� JφKM = 0.

b. If φ and ψ are formulas, then J(φ ∧ ψ)KM = 1 i� both JφKM = 1 and JψKM = 1.

c. If φ and ψ are formulas, then J(φ ∨ ψ)KM = 1 i� at least one of JφKM, JψKM = 1.

d. If φ and ψ are formulas, then J(φ→ ψ)KM = 1 i� JφKM = 0 or JψKM = 1.

e. If φ and ψ are formulas, then J(φ↔ ψ)KM = 1 i� JφKM = JψKM.

(7) Truth table for conjunction:

p q (p ∧ q)
1 1 1
1 0 0
0 1 0
0 0 0

..
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Recap: Statement logic

• we can write down the semantic rules like the syntactic rules
• read J KM as interpreted in relation to model M

(8) Semantics of statement logic

a. If φ is a formula, then J(¬φ)KM = 1 i� JφKM = 0.

b. If φ and ψ are formulas, then J(φ ∧ ψ)KM = 1 i� both JφKM = 1 and JψKM = 1.

c. If φ and ψ are formulas, then J(φ ∨ ψ)KM = 1 i� at least one of JφKM, JψKM = 1.

d. If φ and ψ are formulas, then J(φ→ ψ)KM = 1 i� JφKM = 0 or JψKM = 1.

e. If φ and ψ are formulas, then J(φ↔ ψ)KM = 1 i� JφKM = JψKM.

(9) Truth table for disjunction:

p q (p ∨ q)
1 1 1
1 0 1
0 1 1
0 0 0

..
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Recap: Statement logic

• we can write down the semantic rules like the syntactic rules
• read J KM as interpreted in relation to model M

(10) Semantics of statement logic

a. If φ is a formula, then J(¬φ)KM = 1 i� JφKM = 0.

b. If φ and ψ are formulas, then J(φ ∧ ψ)KM = 1 i� both JφKM = 1 and JψKM = 1.

c. If φ and ψ are formulas, then J(φ ∨ ψ)KM = 1 i� at least one of JφKM, JψKM = 1.

d. If φ and ψ are formulas, then J(φ→ ψ)KM = 1 i� JφKM = 0 or JψKM = 1.

e. If φ and ψ are formulas, then J(φ↔ ψ)KM = 1 i� JφKM = JψKM.

(11) Truth table for conditional:

p q (p→ q)
1 1 1
1 0 0
0 1 1
0 0 1

..
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Recap: Statement logic

• we can write down the semantic rules like the syntactic rules
• read J KM as interpreted in relation to model M

(12) Semantics of statement logic

a. If φ is a formula, then J(¬φ)KM = 1 i� JφKM = 0.

b. If φ and ψ are formulas, then J(φ ∧ ψ)KM = 1 i� both JφKM = 1 and JψKM = 1.

c. If φ and ψ are formulas, then J(φ ∨ ψ)KM = 1 i� at least one of JφKM, JψKM = 1.

d. If φ and ψ are formulas, then J(φ→ ψ)KM = 1 i� JφKM = 0 or JψKM = 1.

e. If φ and ψ are formulas, then J(φ↔ ψ)KM = 1 i� JφKM = JψKM.

(13) Truth table for biconditional:

p q (p↔ q)
1 1 1
1 0 0
0 1 0
0 0 1

..
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Computing complex truth values

• so far, we’ve looked at truth tables for expressions that consist of
maximally two atomic statements
• but a truth table provides a systematic method to compute the truth

value of any expression in statement logic
• the number of rows in a truth table depends on the number of atomic

statements: every logical combination has to show up
• if an expression has n atomic statements, then the truth table will have

2n rows
• why 2? . . . because we have 2 truth values
• so let us compute the truth values of (depending on the truth values of

the atomic statements p, q, and r):

(14) ((p ∧ q)→ (¬(p ∨ r))
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Computing complex truth values

• so let us compute the truth values of:

(15) ((p ∧ q)→ (¬(p ∨ r))

(16)
p q r (p ∧ q) (p ∨ r) ¬(p ∨ r) ((p ∧ q)→ (¬(p ∨ r))
1 1 1 1 1 0 0
1 1 0 1 1 0 0
1 0 1 0 1 0 1
1 0 0 0 1 0 1
0 1 1 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 0 0 1 1

..
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Exercise

• last week, we said that the following holds:

(17) (p↔ q) = ((p→ q) ∧ (q → p))

• prove it!
..

Statement Logic II Session 7 December 12th , 2024 12 / 30



Exercise

• last week, we said that the following holds:

(18) (p↔ q) = ((p→ q) ∧ (q → p))

• prove it!

(19)
p q (p↔ q)
1 1 1
1 0 0
0 1 0
0 0 1

(20)
p q (p→ q) (q → p) ((p→ q) ∧ (q → p))
1 1 1 1 1
1 0 0 1 0
0 1 1 0 0
0 0 1 1 1

..
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Tautologies

• a (complex) statement is called a logical tautology i� the final column in its
truth table contains only the values 1/True, regardless of what the truth values
of its atomic statements are
• a tautological statement is true simply because of the meaning of the logical

connective(s) in it: this is why the meanings of the individual atomic
statements in it don’t ma�er
• another way to express this would be to say that a tautological statement is

always true

(21) example of a logical tautology:

(p→ p)

p (p→ p)
1 1
0 1
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Contradictions

• a (complex) statement is called a logical contradiction i� the final column of its
truth table only contains the values 0/False, regardless of what the truth values
of its atomic statements are
• similarly to a tautology, a contradictory statement is false simply because of the

meaning of the logical connective(s) in it: this is why the meanings of the
individual atomic statements in it don’t ma�er
• a logically contradictory statement is always false

(22) example of a logical contradiction:

(p ∧ (¬p))

p (¬p) (p ∧ (¬p))
1 0 0
0 1 0
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Contingencies

• an important property of logical tautologies and logical contradictions is that the truth
values of the atomic statements in them simply don’t ma�er
• all overall truth values (final column) are either always 1 (tautologies) or always 0

(contradictions)
• all other statements, with both 1/True and 0/False in the final column of their truth table

are called logical contingencies
• the idea is that the truth of these statements is contingent (i.e. dependent) on the truth of

the atomic statement(s) contained in them
• most of the examples (involving both complex and atomic statements) we’ve seen so far

have been logical contingencies

(23) example of a contingency:

((p ∨ q)→ q)

p q (p ∨ q) ((p ∨ q)→ q)
1 1 1 1
1 0 1 0
0 1 1 1
0 0 0 1
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Exercise

• among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p→ (q → p))

b. (p ∨ q)

c. (¬(p ∨ (¬p)))

• say which is which by drawing truth tables for each of the expressions
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Exercise

• among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p→ (q → p))

b. (p ∨ q)

c. (¬(p ∨ (¬p)))

• say which is which by drawing truth tables for each of the expressions
• (p→ (q → p)) is a tautology!

(25)
p q (q → p) (p→ (q → p))
1 1 1 1
1 0 1 1
0 1 0 1
0 0 1 1
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Exercise

• among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p→ (q → p))

b. (p ∨ p)

c. (¬(p ∨ (¬p)))

• say which is which by drawing truth tables for each of the expressions
• (p ∨ q) is a contingency!

(26)
p p (p ∨ p)
1 1 1
0 0 0
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Exercise

• among the three complex expressions below, one is a logical tautology, one is a
logical contradiction, and one is a logical contingency

(24) a. (p→ (q → p))

b. (p ∨ p)

c. (¬(p ∨ (¬p)))

• say which is which by drawing truth tables for each of the expressions
• (¬(p ∨ (¬p))) is a contradiction!

(27)
p ¬p (p ∨ (¬p)) (¬(p ∨ (¬p)))
1 0 1 0
0 1 1 0
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reductio ad absurdum

• another way of reasoning (one without truth tables), i.e., proving that
some statement is a tautology, is called reductio ad absurdum
• the reasoning works like this (we have done this before):

1 assume that the statement is in fact not a logical tautology, i.e. you
assume that one of its possible truth values is 0

2 then reason “backwards” from this assumption to compute the possible
values of the atomic statements in this complex expression

3 if, based on this assumption, you run into a contradiction, then your
assumption was wrong and the statement is indeed a tautology

4 if, on the other hand, you don’t run into a contradiction, then your
assumption was correct a�er all, and the complex statement is not a
logical tautology
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reductio ad absurdum: example

• here is an example: suppose we want to prove that (p→ (q → p)) is a
tautology (see above)

1 assume that (p→ (q → p)) is false:
(28) (p→ (q → p))

0

2 reasoning backwards from this assumption, we know that the only way the whole
expression can be 0 is if the antecedent is 1 and the consequent is 0
(29) (p→ (q → p))

1 0 0

3 now we have to give every instance of p the same value (p is a constant)
(30) (p→ (q → p))

1 0 0 1

4 contradiction: there is no way a conditional ((q → p)) can be false if the
consequent (p) is true (this holds independent of the truth value of q)

5 since our assumption that (p→ (q → p)) is false has led us to a contradiction,
our assumption must be false, hence (p→ (q → p)) is a logical tautology
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reductio ad absurdum: exercise

• try this line of reasoning with the next example

(31) (p ∨ (¬p))

1 assume that (p ∨ (¬p)) is false:
(32) (p ∨ (¬p))

0

2 reasoning backwards from this assumption, we know that the only way the whole
expression can be 0 is if both disjuncts are 0
(33) (p ∨ (¬p))

0 0 0

3 a contradiction: there is no way p can be 0 and ¬p can be 0
4 since our assumption that (p ∨ (¬p)) is false has led us to a contradiction, our

assumption must be false, hence (p ∨ (¬p)) is a logical tautology
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Logical equivalence

• if a biconditional statement is a logical tautology, then the two constituent
statements on either side of the biconditional arrow are logically equivalent
• in other words: a biconditional between p and q is True precisely if they both

are True or if they both are False, hence p and q always need to give back the
same truth value for logical equivalence

(34)

p q (p↔ q)
1 1 1
1 0 0
0 1 0
0 0 1

• to denote logical equivalence between two arbitrary expressions P and Q
(atomic or complex) we write P ⇔ Q
• we have already proven a logical equivalence:

(35) (p↔ q)⇔ ((p→ q) ∧ (q → p))
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Logical equivalence: exercise

• let us prove another logical equivalence!

(36) (¬(p ∨ q))⇔ ((¬p) ∧ (¬q))
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Logical equivalence: exercise

• let us prove another logical equivalence!

(36) (¬(p ∨ q))⇔ ((¬p) ∧ (¬q))

(37)
p q (p ∨ q) (¬(p ∨ q))
1 1 1 0
1 0 1 0
0 1 1 0
0 0 0 1

(38)
p q (¬p) (¬q) ((¬p) ∧ (¬q))
1 1 0 0 0
1 0 0 1 0
0 1 1 0 0
0 0 1 1 1
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Logical equivalence

• regardless of the truth values of the atomic statements p and q, the expressions
(¬(p ∨ q)) and ((¬p) ∧ (¬q)) always have the same truth value
• since two logically equivalent statements have exactly the same truth values in

every row of the truth table, one can substitute one for the other in a larger
expression E , and vice versa, without changing the truth value of E
• so we can subtitute ((¬p) ∧ (¬q)) with (¬(p ∨ q)) (and vice versa)
• another example:

(39) p⇔ (p ∧ p)

a. ((p ∧ p) ∨ q)

b. substitution: (p ∨ q)

• the following laws of statement logic define various logic equivalences
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Laws of Statement logic

(40) Idempotent Laws:

a. (P ∨ P)⇔ P

b. (P ∧ P)⇔ P

(41) Commutative Laws:

a. (P ∨ Q)⇔ (Q ∨ P)

b. (P ∧ Q)⇔ (Q ∧ P)

(42) Associative Laws:

a. ((P ∨ Q) ∨ R)⇔ (P ∨ (Q ∨ R))

b. ((P ∧ Q) ∧ R)⇔ (P ∧ (Q ∧ R))

(43) Identity Laws:

a. (P ∨ False)⇔ P

b. (P ∧ False)⇔ False

c. (P ∨ True)⇔ True

d. (P ∧ True)⇔ P

(44) Distributive Laws:

a. (P ∨ (Q ∧ R))⇔ ((P ∨Q) ∧ (P ∨ R))
b. (P ∧ (Q ∨ R))⇔ ((P ∧Q) ∨ (P ∧ R))

(45) Complement Laws:

a. (P ∨ (¬P))⇔ True

b. (¬(¬P))⇔ P

c. (P ∧ (¬P))⇔ False

(46) DeMorgan’s Laws:

a. (¬(P ∨ Q))⇔ ((¬P) ∧ (¬Q))

b. (¬(P ∧ Q))⇔ ((¬P) ∨ (¬Q))
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Laws of Statement logic

(47) Conditional Laws:

a. (P → Q)⇔ ((¬P) ∨ Q)

b. (P → Q)⇔ ((¬Q)→ (¬P))

(48) Biconditional Laws:

a. (P ↔ Q)⇔ ((P → Q) ∧ (Q → P))

b. (P ↔ Q)⇔ (((¬P)∧(¬Q))∨(P∧Q))
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Logical consequence

• if a conditional statement is a logical tautology, we say that the consequent is a logical
consequence of the antecedent (antecedent → consequent)
• alternatively, we say that the antecedent logically implies the consequent, and we write

this as P ⇒ Q

(49) example of a logical consequence:

(((p→ q) ∧ q)→ q)

p q (p→ q) ((p→ q) ∧ q) (((p→ q) ∧ q)→ q)
1 1 1 1 1
1 0 0 0 1
0 1 1 1 1
0 0 1 0 1

• the rightmost column shows the conditional statement of which we want to find out if its
consequent q is a logical consequence of the antecedent ((p→ q) ∧ q)
• since every value in this column is True, the conditional is a tautology, and hence q is also

a logical consequence of ((p→ q) ∧ q)
• so we write: ((p→ q) ∧ q)⇒ q
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