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Recap: Relations Reflexivity and Symmetry

• given a set A and a relation R in A (R ⊆ A× A), R is reflexive i� all the
ordered pairs of the form 〈x, x〉 are in R for every x in A
• a relation that is not reflexive is called non-reflexive
• a relation which contains no ordered pair of the form 〈x, x〉 is

irreflexive
• “taller than” = irreflexive, “equal to” = reflexive, “is financial supporter

of” = non-reflexive
• given a set A and a relation R in A (R ⊆ A× A), R is symmetric i� for

every ordered pair 〈x, y〉 in R, the pair 〈y, x〉 is also in R
• a relation that is not symmetric is called non-symmetric
• a relation in which it is never the case that for an ordered pair 〈x, y〉,
〈y, x〉 is also a member, is asymmetric

• a relation is anti-symmetric if whenever both 〈x, y〉 and 〈y, x〉 are in R,
then x = y

• “self-employed” = symmetric, anti-symmetric, “friend of” =
non-symmetric, “father of” = asymmetric, and “cousin of” = symmetric
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Recap: Relations Transitivity and Connectedness

• given a set A and a relation R in A (R ⊆ A× A), R is transitive i� for
all ordered pair 〈x, y〉 and 〈y, z〉 in R, the pair 〈x, z〉 is also in R
• a relation that is not transitive is called non-transitive
• a relation is intransitive if for no pairs 〈x, y〉 and 〈y, z〉 in R, the

ordered pair 〈x, z〉 is in R

• “mother of” = intransitive, “older than” = transitive, “like” =
non-transitive

• given a set A and a relation R in A (R ⊆ A× A), R is connected or
connex i� for every two distinct elements x and y in A, the pair
〈x, y〉 ∈ R or 〈y, x〉 ∈ R or both
• “father of” = not connected, “greater than” = connected, “same hair

color as” = not connected
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Recap: Properties of R−1 and R′

• recall that the inverse of a relation R (= R−1) is simply R with the members
inside each ordered pair reversed
• and that the complement of a relation R (= R′) contains all the ordered pairs (in

the Cartesian Product of which R is a subset) that are not in R
• certain properties are preserved from R to R−1 and R′

R (not ∅) R−1 R′

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric symmetric
asymmetric asymmetric non-symmetric
antisymmetric antisymmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R
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Recap: Equivalence relations and classes; Partitions

• an equivalence relation is one which is reflexive, symmetric, and transitive
• “=” is the most typical equivalence relation; others are: “same height as” or

“same age as ”
• an equivalence class [x] is a set of all elements that are related to x by some

equivalence relation

(1) [x] = {y | 〈x, y〉 ∈ R}, where R is an equivalence relation

• there is a close correspondence between equivalence classes and partitions
• given a non-empty set A, a partition of A is a collection of non-empty subsets

of A (where subsets are called cells) such that
1 for any two distinct subsets X and Y , X ∩ Y = ∅
2 the union of all the subsets equals A

• equivalence classes specified by R in set A are the cells of the partition induced
on A!
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Orderings

• an ordering is a binary relation which is transitive and additionally:

weak ordering
• reflexive
• anti-symmetric

strong ordering
• irreflexive
• asymmetric

• which of the following relations on set A are orderings? if so, are they strong or weak
orderings?.

(2) A = {a, b, c, d}

(3) a. R1 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉} weak

b. R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉} strong

c. R3 = {〈a, b〉, 〈a, d〉, 〈b, c〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉} not an ordering

d. R4 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈b, a〉} weak

e. R5 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉} strong

f. R6 = {〈b, a〉, 〈b, b〉, 〈a, a〉, 〈c, c〉, 〈d, d〉, 〈c, b〉, 〈c, a〉} weak

g. R7 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈b, a〉} strong

h. R8 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉, 〈d, a〉} not an ordering

Orderings, Introduction to Statement Logic Session 6 December 5th , 2024 6 / 35



Orderings

• an ordering is a binary relation which is transitive and additionally:

weak ordering
• reflexive
• anti-symmetric

(4) R6 = {〈b, a〉, 〈b, b〉, 〈a, a〉, 〈c, c〉,
〈d, d〉, 〈c, b〉, 〈c, a〉}

(5)

a

b

c

d

strong ordering
• irreflexive
• asymmetric

(6) R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉}

(7)

a

b

c

d

• we can produce a strong ordering from a weak ordering simply by removing all ordered
pairs of the form 〈x, x〉
• conversely, we can convert a strong ordering into a weak ordering by simply adding all

ordered pairs of the form 〈x, x〉 for every x in A
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Orderings

• we can determine precedence relations on orderings
• If R is an ordering (weak or strong), and 〈x, y〉 ∈ R, then:

• x precedes y or x is a predecessor of y, and
• y succeeds x, or y is a successor of x

• if x precedes y , x 6= y , and there is no element z distinct from both x and y such that x
precedes z and z precedes y , then:
• x immediately precedes y or x is an immediate predecessor of y, and
• y immediately succeeds x, or y is an immediate successor of x

• in R2 for example, c precedes a but not immediately since b intervenes; only b immediately
precedes a

(8) a. R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉}
b.

a

b

c

d
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Orderings

• if an ordering (weak or strong) is also connected (i.e. every distinct element in A is related
to another in an ordered pair) then it is a total or linear ordering

• which of our orderings on set A are total/linear?

(9) A = {a, b, c, d}

(10) a. R1 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉} weak

b. R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉} strong

c. R4 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈b, a〉} weak

d. R5 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉} strong

e. R6 = {〈b, a〉, 〈b, b〉, 〈a, a〉, 〈c, c〉, 〈d, d〉, 〈c, b〉, 〈c, a〉} weak

f. R7 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈b, a〉} strong
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Orderings

• if an ordering (weak or strong) is also connected (i.e. every distinct element in A is related
to another in an ordered pair) then it is a total or linear ordering

• which of our orderings on set A are total/linear?

(9) A = {a, b, c, d}

(10) a. R1 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉} weak

b. R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉} strong

c. R4 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉, 〈b, a〉} weak

d. R5 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉} strong

e. R6 = {〈b, a〉, 〈b, b〉, 〈a, a〉, 〈c, c〉, 〈d, d〉, 〈c, b〉, 〈c, a〉} weak

f. R7 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉, 〈c, a〉, 〈b, a〉} strong

• only R7 and R4 are linear orderings
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Orderings

• if an ordering (weak or strong) is also connected (i.e. every distinct element in A is related
to another in an ordered pair) then it is a total or linear ordering
• we exemplify here with our strong orderings: R7 is linear, R2 and R5 are not

(11) R7 = {〈d, c〉, 〈d, b〉, 〈d, a〉, 〈c, b〉,
〈c, a〉, 〈b, a〉}

(12)

a

b

c

d

(13) a. R2 = {〈b, a〉, 〈c, b〉, 〈c, a〉}
b. R5 = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, c〉}

(14) a.

a

b

c

d

b.

c

b

a

d
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Cardinality, set equivalence

• the cardinality of a set = the number of members/elements inside that set
• for a given set A, the cardinality of A is wri�en as |A|

(15) a. X = {a, b, c}
b. |X | = 3

• two sets are considered equivalent i� there exists a (total) one-to-one correspondence
between them
• what would this mean again for sets X and Y below?

(16) a. X = {a, b, c}
b. Y = {x, y, z}

(17) X : Y :

c

b

a

x

y

z
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Cardinality, set equivalence

• two sets are considered equivalent i� there exists a one-to-one correspondence between
them

(18) a. X = {a, b, c}
b. Y = {x, y, z}

(19) X : Y :

c

b

a

x

y

z

• since X and Y are equivalent, they are also of the same size

(20) |X | = |Y | = 3

• you will also find this notation for set equivalence: X ∼ Y
• equal vs. equivalence: two sets are equal i� they have the same members; set equivalence

has to do with the number of members
• set equivalence is thus a weaker notion than set equality: two equal sets will always also

be equivalent; however, two equivalent sets need not be equal
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New topic

Logic and Formal Systems

Orderings, Introduction to Statement Logic Session 6 December 5th , 2024 14 / 35



Logic

• logic is the study of reasoning
• in particular, it is concerned with the question which pa�erns of

reasoning are valid and which are not
• we all use logic to reason about the objects in the world we live in
• our reasoning is based on axioms — a set of assumptions that we hold

to be true in our world
• the axioms we have are relative to the time and place we live in, and

may thus change with time
• here are some statements that were axioms in the past, but not

anymore:
1 The earth is the center of the solar system.
2 Pluto is a planet.
3 Smoking does not lead to cancer.
4 Climate change is not real.

Orderings, Introduction to Statement Logic Session 6 December 5th , 2024 15 / 35



Logic

• a formal system, such as a logic, consists of:
1 a non-empty set of primitives: the things/objects we are interested in

investigating further
e.g. Pluto, earth, climate change, Pluto is a planet

2 a set of statements, called axioms, about those primitives
e.g. Pluto is not a planet; Madonna is alive and Prince is dead

3 a way to reason, i.e. derive further statements from these axioms

(21) All women are mortals.
Madonna is a woman.

∴ Madonna is a mortal.

• read ∴ as “therefore”, premises (statements) are above the line, the
conclusion is below the line
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Logic

• we have an intuitive understanding of which reasoning is valid and
which is not

(22) All women are mortals.
Madonna is a woman.

∴ Madonna is a mortal.

(23) Some women are mortals.
Madonna is a woman.
6∴ Madonna is a mortal.

• if we accept the truth of the premise of a valid argument, we cannot
deny its consequence
• the validity of an argument only depends on its form (and on some of

the words that are part of the statement, such as all and some above)

(24) All X’s are Y.
Ψ is an X.

∴ Ψ is a Y.

(25) Some X’s are Y.
Ψ is an X.
6∴ Ψ is a Y.
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Natural vs. Formal Languages

• languages we speak and use naturally to communicate with each other
are what we call natural languages
• formal languages, on the other hand, are usually designed by people

for a clear, particular purpose
• set theory
• statement logic
• predicate logic
• programming languages like Python, Perl, or C++
• Morse code

• we will be concerned with two types of formal languages: statement
logic and predicate logic
• these have been deliberately designed to be syntactically and

semantically simpler than natural language and avoid many of its
ambiguities and subtleties
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Object vs. Meta Language

• it is important that we keep separate two types of language:
• object language:

language system that is the object of our study
• meta language:

language system we use to talk about the object language

• we can use set theory, for instance, as a metalanguage to talk about
physical systems
• we can also talk in English about English
• in this class we will use statement logic and then later on predicate

logic to talk about natural languages such as English, German, and so
on . . .
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Syntax and semantics of a formal system

• within languages we separate between form and content
• syntax:

properties of expressions of the system itself, such as its primitives,
axioms, rules of inference

• semantics:
relations between the system and its models or interpretations

• one needs a set of basic expressions, the vocabulary, from which more
complex expressions can be built according to the syntactic rules
• finding a model for a theory requires finding . . .

• some abstract or concrete structured domain and . . .
• an interpretation for all of the primitive expressions of the theory in that

domain . . .

. . . such that on that interpretation, all of the statements (the axioms)
in the theory come out true
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Statement logic and predicate logic

• statement as well as predicate logic each have their own vocabulary,
rules of syntax, and semantics
• the syntactic and semantic components of these languages are very

much simpler than those of any natural language
• the sentences of our logical languages are all declaratives – there are

no interrogatives (questions), imperatives, performatives, etc.
• the means of joining sentences together to form compound sentences

is severely limited:
• in statement logic, we will have sentential connectives corresponding

(roughly) to English and, or, not, if . . . then, and if and only if, but
nothing to because, while, a�er, although, . . .
• in predicate logic we will in addition find counterparts of a few

determiners of English: some, all, no, every, but not most, many, a few,
several, one half, . . .

Orderings, Introduction to Statement Logic Session 6 December 5th , 2024 21 / 35



Statement logic

• today and for the next two sessions, we will take a closer look at
statement logic

Statement logic

A formal system where the primitives are all statements.

• we will assume an infinite vocabulary of atomic statements (atomic in
the sense that these sentences are in their simplest form)

(26) Basic expressions of statement logic

a p, q, r, s, p′, p′′, . . .

• we can think of atomic statements in our formal statement logic
system as being like very simple declarative sentences in natural
language, e.g. Climate change is happening.
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Statement logic

• we also have syntactic rules of wellformedness, i.e. we can use atomic statements to create
more complex statements or formulas (well-formed formula o�en abbreviated as w�)

(27) Syntax of statement logic

a. An atomic statement is a well-formed formula.

b. If φ is a well-formed formula, then (¬φ) is a well-formed formula.

c. If φ and ψ are well-formed formulas, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are well-formed formulas.

d. Nothing else is a (well-formed) formula.

• any two distinct w�s can be made into one w� by means of adding any of (binary)
connectives between them (¬ = negation, is a unary “connective”, of course)
• ∧ = conjunction, similar to “and”
• ∨ = disjunction, similar to (inclusive) “or”
• → = conditional, similar to “if . . . then”
• ↔ = biconditional, similar to “if and only if”

• finally, we enclose the result of forming a complex formula in parentheses
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Exercise
(28) Basic expressions of statement logic

a p, q, r, s, p′, p′′, . . .

(29) Syntax of statement logic

a. An atomic statement is a well-formed formula.

b. If φ is a well-formed formula, then (¬φ) is a well-formed formula.

c. If φ and ψ are well-formed formulas, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are well-formed formulas.

d. Nothing else is a formula.

(30) Determine the well-formedness of the following formulae:

a. p

b. q′

c. (¬r)

d. ¬
e. (r → s)

f. r ↔ s
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Exercise
(28) Basic expressions of statement logic

a p, q, r, s, p′, p′′, . . .

(29) Syntax of statement logic

a. An atomic statement is a well-formed formula.

b. If φ is a well-formed formula, then (¬φ) is a well-formed formula.

c. If φ and ψ are well-formed formulas, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and
(φ↔ ψ) are well-formed formulas.

d. Nothing else is a formula.

(30) Determine the well-formedness of the following formulae:

a. p well-formed

b. q′ well-formed

c. (¬r) well-formed

d. ¬ not well-formed

e. (r → s) well-formed

f. r ↔ s → . . . not well-formed

Orderings, Introduction to Statement Logic Session 6 December 5th , 2024 25 / 35



Statement logic

• we said that atomic statements correspond to simple declarative sentences
• but such sentences can also look more complex while still being considered an atomic

statement

(31) a. Climate change is happening.

b. The government’s constant denial of climate change has led Mary to consider
participating in a demonstration this Friday.

• statement logic also ignores pragmatic concerns like speaker, hearer, u�erance context, or
information packaging
• two distinct sentences in natural language which may di�er from one another in

pragmatics but have the same meaning would count as the same statement in statement
logic

(32) a. Wasting food is one of the problems of modern society.

b. One of the problems of modern society is wasting food.
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Statement logic

• now let us talk about the semantics of statement logic
• statements, both atomic and complex, all have a truth value
• since statement logic is a binary logic, there are two truth values: True

(or 1) and False (or 0), no other option is possible
• the truth value of an atomic sentence, say p, depends on nothing other

than the content of p (this will mostly be determined by our model)
• the truth value of a complex statement (built out of atomic statements)

like: ((¬p) ∧ q) will depend on:
• the truth value of p
• the truth value of q
• the truth functional properties of the connectives ¬ and ∧

• unlike the truth values of statements, which vary according to the
content of these statements (the model), the truth functional
properties of connectives are uniform and universal
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Statement logic: negation

• the easiest way to illustrate the semantics of statement logic are truth
tables; we will start with negation
• if p is True, than negating p produces the truth value False (and vice

versa)

(33) Truth table for negation:
p (¬p)

1 0
0 1

• English o�en expresses negation with “not”, sometimes with an
additional auxiliary

(34) a. John is here vs. John is not here p vs. (¬p)

b. John smokes vs. John does not smoke p vs. (¬p)
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Statement logic: conjunction

• conjunction ∧ is very close to English “and”
• imagine the following contents for p and q and try to fill in the truth

values in the table!

(35) a. p = John smokes

b. q = Jane snores

(36) Truth table for conjunction:

p q (p ∧ q)

1 1
1 0
0 1
0 0
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Statement logic: conjunction

• conjunction ∧ is very close to English “and”
• imagine the following contents for p and q and try to fill in the truth

values in the table!

(35) a. p = John smokes

b. q = Jane snores

(36) Truth table for conjunction:

p q (p ∧ q)

1 1 1
1 0 0
0 1 0
0 0 0

• essentially, a complex expression: (p ∧ q) has a truth value of True i�
both p and q are True, in all other cases it is False
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Statement logic: disjunction

• disjunction ∨ corresponds to one particular use of English “or”
• imagine the following contents for p and q and try to fill in the truth

values in the table!

(37) To watch this movie, . . .

a. p = you have to be over 13

b. q = be accompanied by a parent

(38) Truth table for disjunction:

p q (p ∨ q)

1 1
1 0
0 1
0 0
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Statement logic: disjunction

• disjunction ∨ corresponds to one particular use of English “or”
• imagine the following contents for p and q and try to fill in the truth

values in the table!

(37) To watch this movie, . . .

a. p = you have to be over 13

b. q = be accompanied by a parent

(38) Truth table for disjunction:

p q (p ∨ q)

1 1 1
1 0 1
0 1 1
0 0 0

• for (p ∨ q) to be True at least one (including both), p or q, has to be
True, otherwise it is False; this is the inclusive disjunction
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Statement logic: disjunction

• there is also another prominent interpretation of English “or”
• which truth value does not fit anymore in the truth table given the following

context?

(39) I cannot remember what Peter had to drink last time, . . .

a. p = Peter had tea

b. q = Peter had co�ee

(40) Truth table for disjunction:

p q (p ∨ q)

1 1 1
1 0 1
0 1 1
0 0 0

• the first row would be 0!
• this is the exclusive reading of “or” which can also be made explicit with

“either . . . or” (statement logic only recognizes inclusive disjunction)
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Statement logic: conditional

• the natural language correpondent for the conditional→ is “if . . . then”
• the first two rows of the table are easy to understand with the example below:

(41) a. p = Mary is at the party

b. q = John is at the party

(42) Truth table for conditional:

p q (p→ q)

1 1 1
1 0 0
0 1 1
0 0 1

• clearly when p is True but q is False, the conditional does not hold, hence it is
False
• the last two rows show what happens when p is False: one may be reluctant to

say that the conditional is False, rather, it does not seem to have a truth value
• but in a two-valued logic (such as statement logic), if a statement is not False, it

must be true!
• this reasoning makes the last two rows (of the conditional) True
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Statement logic: biconditional

• the biconditional↔ corresponds to English “if and only if” (i�)
• here is an example

(43) a. p = I will leave tomorrow

b. q = I get the car fixed

(44) Truth table for biconditional:

p q (p↔ q)

1 1 1
1 0 0
0 1 0
0 0 1

• (p↔ q) is the same as (“logically equivalent to”, see next session)
((p→ q) ∧ (q → p)), which also explains the third row
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