Modul 04-006-1001: Formale Grundlagen (Logik)

Excercises 4

Excercise 1: Relations and functions

Let $A = \{a, b, c\}$ and $B = \{1, 2\}$.

- How many distinct relations are there from A to B?
- How many of these are total functions from A to B?
- How many of these total functions are onto (surjective)?
- How many of these total functions are one-to-one (injective)?
- Do any of these functions have inverses that are also total functions?
- Answer the same questions for all relations from B to A.

Excercise 2: Composition

Let R_1 and R_2 be the following two relations in $A = \{1, 2, 3, 4\}$:

- (1) a. $R_1 = \{ \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 4, 1 \rangle \}$ b. $R_2 = \{ \langle 3, 4 \rangle, \langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 1, 3 \rangle \}$
 - Form the composites $R_2 \circ R_1$ and $R_1 \circ R_2$. Are they equal?
 - Show that $R_1^{-1} \circ R_1 \neq id_A$ and that $R_2^{-1} \circ R_2 \not\subseteq id_A$.

Excercise 3: Composition and the inverse

- Let F and G in (2-a,b) be functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3, 4\}$ and from $C = \{1, 2, 3, 4\}$ to $D = \{p, q, r\}$, respectively. Show that $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$.
- (2) a. $F = \{\langle a, 1 \rangle, \langle b, 3 \rangle, \langle c, 3 \rangle\}$ b. $G = \{\langle 1, p \rangle, \langle 2, q \rangle, \langle 3, q \rangle, \langle 4, r \rangle\}$

Excercise 4: Reflexivity and symmetry

• Give the status for the two relations "is a child of" and "is a brother of" (in the set of human beings) with respect to reflexivity and symmetry. Only mention the strongest property if the relation in question has more than one (e.g., a relation that is irreflexive is also non-reflexive, but not vice versa).

Excercise 5: More reflexivity and symmetry Let $A = \{1, 2, 3, 4\}$.

• Describe the properties of each relation R_i in A below, of its inverse (R_i^{-1}) , and of its complement (R'_i) with respect to reflexivity and symmetry.

(3) a.
$$R_1 = \{ \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 4, 1 \rangle \}$$

b. $R_2 = \{ \langle 3, 4 \rangle, \langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 1, 3 \rangle \}$
c. $R_3 = \{ \langle 2, 4 \rangle, \langle 3, 1 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle, \langle 4, 3 \rangle, \langle 4, 2 \rangle \}$
d. $R_4 = \{ \langle 1, 1 \rangle, \langle 2, 4 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 4, 4 \rangle, \langle 3, 3 \rangle, \langle 4, 2 \rangle \}$