Formale Grundlagen (Logik)

Excercises 3

Excercise 1: Set operations and membership

- Given the sets in (1), what are the sets defined in (2)?
- Is a a member of $\{A, B\}$?
- Is a a member of $A \cup B$?

(1) $A = \{a, b, c\}$

 $B = \{c, d\}$ b.

 $C = \{d, e, f\}$ c.

 $A \cup B$ (2) a.

> b. $A \cap B$

c. $A \cup (B \cap C)$

 $C \cup A$ d.

e. $B \cup \emptyset$

f. $A \cap (B \cap C)$

g. A - B

Excercise 2: Set theoretic equations

• Show by using the set-theoretic equalities that were introduced (idempotent laws, commutative laws, etc.) that the following holds for any sets A and B: $A \cap (B - A) = \emptyset$.

Excercise 3: Venn diagramms and distributive law

• Show by means of Venn diagramms that the equation in (3) holds (one of the distributive laws).

$$(3) \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Excercise 4: Symmetric difference

- The symmetric difference between two sets A and B is defined as in (4-a).
- Draw the Venn diagramm for the symmetric difference of two sets.
- Show that (4-b) holds by making reference to set theoretic equalities. Verify that the Venn diagramm for $(A - B) \cup (B - A)$ is the same as the diagramm for A + B.
- Show that for all sets A and B: A + B = B + A.

(4) a.
$$A + B =_{def} (A \cup B) - (A \cap B)$$

b.
$$A + B =_{def} (A - B) \cup (B - A)$$

Excercise 5: More on symmetric difference

- Redefine the sets in (5), getting rid of the +-operator.
- Show that the statements in (6-a,b) are correct.
- A + A(5) a.
 - A + Ub.
 - $A + \emptyset$ c.
 - d. A + B, where $A \subseteq B$
 - A + B, where $A \cap B = \emptyset$

(6) a.
$$((A - B) + (B - A)) = A + B$$

b. $(A + B) \subseteq B \text{ iff } A \subseteq B$

Excercise 6: Carthesian products and relations

- Given are the sets $A = \{b, c\}$ and $B = \{2, 3\}$.
- Specify the sets in (7) by listing their members.

(7) a.
$$A \times B$$

b. $B \times A$
c. $A \times A$
d. $(A \cup B) \times B$
e. $(A \cap B) \times B$
f. $(A - B) \times (B - A)$

- Consider now the following relation from A to $(A \cup B)$: $R = \{\langle b, b \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle, \langle c, 3 \rangle\}$
- Specify the domain and the range of R.
- Specify R' and R^{-1} .
- Is $(R')^{-1}$ equal to $(R^{-1})'$?