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Recap: Statement logic
we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements. J

(1)  Basic expressions of statement logic

a pq rassplvp”w"

(2) Syntax of statement logic
a. An atomic statement is a well-formed formula.
b. If ¢ is a well-formed formula, then (—¢) is a well-formed formula.

c. If ¢ and ¢ are well-formed formulas, then (¢ A ), (¢ V ), (¢ — ), and
(¢ < 9) are well-formed formulas.

d. Nothing else is a formula.
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Recap: Statement logic

we wrote down the semantic rules like the syntactic rules
this is an alternative to truth tables
read [ [M as interpreted in relation to model M

(3) Semantics of statement logic

a.

b.

If ¢ is a formula, then [(—¢)]M = 1iff [¢]" = o.

If ¢ and 9 are formulas, then [(¢ A ¥)]M = 1iff both [¢]M = 1 and
[wl™ =1.

If ¢ and 1 are formulas, then [(¢ V ¥)]M = 1 iff at least one of
[o]™, [ = 1.

If ¢ and ¢ are formulas, then [(¢ — ¥)]M = 1iff either [¢]" = 0 or
[v1™ =1.

If ¢ and v are formulas, then [(¢ «> ¥)|M = 1iff [¢]M = [»]M.
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Recap: Tautologies, contradictions & contingencies

a tautological statement is always true: the final column in its truth table contains only
the values 1/True, regardless of what the truth values of its atomic statements are

p (p—p)
1 1
0 1

4)

a logically contradictory statement is always false: the final column of its truth table only
contains the values 0/False, regardless of what the truth values of its atomic statements are

G) | p (=p) (pPA(—p))
10 0
0 1 0

all other statements, with both 1/True and 0/False in the final column of their truth table
are called logical contingencies
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Logical equivalence & logical consequence

if a biconditional statement is a logical tautology, then the two
constituent statements on either side of the biconditional arrow are
logically equivalent

to denote logical equivalence between two arbitrary expressions P and
Q we write P & Q

if a conditional statement is a logical tautology, we say that the
consequent is a logical consequence of the antecedent

alternatively, we say that the antecedent logically implies the
consequent and we write P = Q
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¢ let us prove another logical equivalence!

© (p—q) = ((=p)Vaq)



© let us prove another logical equivalence!

7 (p—q = ((=p)Va

®

©

p g (p—q)

1 1 1

1 0 0

0 1 1

0 0 1

p g (=p) ((=p)V9)
1 1 0 1
10 0 0

0 1 1 1

0 0 1 1




Formal components of a proof

we will turn to one of the central uses of statement logic: constructing a
proof/argument
it consists of two parts
1 a number of statements, called premises: these are just statements that we, for
the sake of argument, assume to be True
2 conclusion, whose truth is demonstrated to necessarily follow from the assumed
truth of the premises

(10) premise 1
premise 2
conclusion

a proof is called valid iff there is no uniform assignment of truth values to its
atomic statements which makes all its premises true and its conclusion false
a proof is called invalid iff there is at least one uniform assignment of truth
values to its atomic statements which makes all its premises true and its
conclusion false
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Formal components of a proof

premises and conclusion of a proof are related by the conditional —
(antecedent — conclusion)

the premises are the antecedent of the conditional

the conclusion is the consequent of the conditional

(11)  For a given proof X, if py, p2, . .., pn are premises of X and g the conlusion
of X, then:

a. Xisvalidiff: ((p1 Ap2 A+ App) — q) is a tautology (i.e. always true)
b. Xisinvalid iff: ((p1 Ap2 A -+ A pp) — q) is not a tautology (i.e. not
always true)

an example for a simple natural language proof:

(12) If Marie eats another pizza, she will get sick.
Marie eats another pizza.
Marie gets sick.
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A kind of proof: Modus Ponens
this proof is called

(13) If Marie eats another pizza, she will get sick.
Marie eats another pizza.
Marie gets sick.

we can translate this argument into statement logic:

(14) a. p = Marie eats another pizza.

b. g = Marie gets sick.

thus, we get the following;:

(15) (p—9)
p
q
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A kind of proof: Modus Ponens
Modus Ponens:

(16) (p—q)
p
q

we can show that the proof is valid with a truth table

(17)
p g (p=q ((p=9Arp) (((P—=9Ap)—q)
1 1 1 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 1

premises are connected via A, the conclusion is a logical consequence (=) if the
proof is valid, i.e. if the implication (—) is a tautology
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More proofs: Modus Tollens

the following proof is called | Modus Tollens

(18) If Jack drinks beer, he will get drunk.
Jack doesn’t get drunk.
Jack doesn’t drink beer.

(19) (p—q)
(—9)
(=p)

again, we can show the validity of the proof by means of a truth table

T o d o drCd) (o dACd) S o)
1 1 1 0 1
1 0 0 0 1
0 1 1 0 1
0 O 1 1 1
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More proofs: Hypothetical Syllogism

the following proof is called ‘ Hypothetical Syllogism ‘

(21) If Jack drinks, he falls asleep.
If Jack sleeps, Sue gets angry.
If Jack drinks, Sue gets angry.

(22) (p—q)
(g—r)
(p—r)

convince yourself of the validity of the proof in the tutorials (or at home) by constructing a
truth table!
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More proofs: Disjunctive Syllogism

the next proof is called ‘ Disjunctive Syllogism ‘

(23) Jill will eat or sleep.
Jill will not eat.

Jill will sleep.

(24) (pVq)
(=p)
q

the validity of the proof is illustrated by the following truth table

25
® e G Ve VA (VAT S 4
1 1 0 1 0 1
1 0 0 1 0 1
0 1 1 1 1 1
0 0 1 0 0 1
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© the next proof is called | Simplification

(26) Bill is short and Marie is tall.
Bill is short.
(27) (pAq)
P

¢ show the validity of the proof with a truth table (solution on next page)



¢ here is the truth table that shows the validity of the proof for simplification:

(28)
p q (pANq ((pAg) —p)
1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 1




More proofs: Conjunction

here is a proof called

(29) Bill is short.
Marie is tall.
Bill is short and Marie is tall.

(30) p
q
(PN q)

the validity of the proof by means of a truth table is as follows

@31

q9 ((prg)—(pAq)

N —
1 1
1 1
1 1
0 1

S O = =T
S =4 o 4la
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¢ the next proof is called

(32) Bill is short.

Bill is short or the earth is round.

(33) 4
(pVq)

© show the validity of the proof with a truth table (solution on next page)



¢ here is the truth table that shows the validity of the proof for addition:

p q (pvg (p—(pVq)
1 1 1 1
(B4) |1 0 1 1
0 1 1 1
0 0 0 1




Logical Fallacies

the proof below is an invalid argument!
this particular logical fallacy is called: fallacy of affirming the consequent

(35) (p—4q)
q
Jo P
we can show that the proof is invalid with a truth table

construct the truth table for this invalid proof. what would we expect as truth
values in the last column (solution on next page)?
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Logical Fallacies

an invalid proof is defined as a conditional that does not always result in True
this is illustrated by the following truth table for the fallacy of affirming the

consequent
(36)
p g (p—~q9 ((pP—q9Arq ((P—9ANq) —p)
1 1 1 1 1
10 0 0 1
0 1 1 1 0
0 0 1 0 1
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Logical Fallacies
fallacy of affirming the consequent:
(37) (p—q)
q
JoPp

it is easy to see why the proof is invalid: the truth of q does not necessarily
entail/imply the truth of the conclusion
take the following natural language equivalent!

(38) If Marie eats another pizza, she will get sick.
Marie gets sick.
J. Marie eats another pizza.

Marie could have gotten sick for a million different reasons
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Logical Fallacies

here is another invalid argument
this particular logical fallacy is called: fallacy of denying the antecedent

(39) (p—4q)
(—p)
J. (79)

show that the proof is invalid with a truth table (solution on next page)

recall that an invalid proof is defined as a conditional that does not always
result in True
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© the truth table for showing the fallacy of denying the antecedent:

(40)

(=p) (=9)

(p—q)

((p—q

A (=p))

(((p = @) A (=p)) = (=9))

SO = AT

q
1
0
1
0

0 0

0 1
1 0
1 1

1

0
1
1

_ a o o=

N YN




Logical Fallacies
fallacy of denying the antecedent:

(41) (p—q)

again, it is easy to see why the proof is invalid: denying the truth of p does not
necessarily entail/imply the falsity of the conclusion
let us think of a natural language equivalent!

(42) If Marie eats another pizza, she will get sick.
Marie doesn’t eat another pizza.

J. Marie will not get sick.

Marie can get sick for different reasons, e.g. too many cocktails
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Simple proofs

(43) Modus Ponens

(p—q)
p
q

(44) Modus Tollens
(p—4q)

(—9)

(=p)

(45) Hypothetical Syllogism

(p—q)

(g—n)

(p—r)

(46) Disjunctive Syllogism

(pVq)

(=p)

q
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(47) Simplification

(pAq)

p
(48) Conjunction

p
q9

(pA Q)

(49) Addition

(pVq)

Session 8

Given the premises 1.-5. we can
prove the atomic statement ¢!

(50) simple proof:

1.

2o =Joey o @

(p—4q)

(pVs)

(g—=r)

(s — 1)

(=)

(—q) 3,5 MT
(=p) 1,6 MT
s 2,7 DS
t 4,8 MP
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Complex proofs

Modus Ponens  (56)
(p—q
p

q

Modus Tollens
(p—q)
(~9)
(=p)

Q)

(52
(57)

(53) Hyp. Syll
(p—q)
(g—r)

(p—r)
Dis. Syll.

(pVq)

(=p)

q

(58)

(54)
(59)

(55) Simplification

(pAq)
p
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Identity Laws:

a.
b.
c.
d.

x V False < x
x N False < False
x V True < True

x N\ True < x

Conditional Laws:

a.

b.

(p—=q) = ((=p) Va9
(p = q) & ((—q9) = (=p))

Commutative Laws:

a.
b.

(pVq) = (qVp)
(pAq) = (gnPp)

Associative Laws:

a.
b.

((pvq)Vvr) & (pVv(qVr))
((pA@IAT) & (pA(gAT))
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Given the premises 1.-2. we can
prove the implication (p — q) !

(60)

S R

complex proof:
(p—(qVvr))

(=r)

((-p)V(gV'r)) 1Cond
(PVAV  3Ass
(((=P)V @) VF)  4Neg
((p)Va) 5 ldent
(p—q) 6 Cond
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