Formale Grundlagen (Logik) Modul 04-006-1001

Statement Logic III

Leipzig University

January 4th, 2024

Fabian Heck

(Slides by Imke Driemel & Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990 "Mathematical Methods in Linguistics")

Recap: Statement logic

• we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements.

- (1) Basic expressions of statement logic
 - a p, q, r, s, p', p'', ...
- (2) Syntax of statement logic
 - a. An atomic statement is a well-formed formula.
 - b. If ϕ is a well-formed formula, then $(\neg \phi)$ is a well-formed formula.
 - c. If ϕ and ψ are well-formed formulas, then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, and $(\phi \leftrightarrow \psi)$ are well-formed formulas.
 - d. Nothing else is a formula.

Recap: Statement logic

- we wrote down the semantic rules like the syntactic rules
- this is an alternative to truth tables
- read [[]^M as interpreted in relation to model M
 - (3) Semantics of statement logic
 - a. If ϕ is a formula, then $[(\neg \phi)]^M = 1$ iff $[\phi]^M = 0$.
 - b. If ϕ and ψ are formulas, then $[\![(\phi \land \psi)]\!]^M = 1$ iff both $[\![\phi]\!]^M = 1$ and $[\![\psi]\!]^M = 1$.
 - c. If ϕ and ψ are formulas, then $[\![(\phi \lor \psi)]\!]^M = 1$ iff at least one of $[\![\phi]\!]^M, [\![\psi]\!]^M = 1$.
 - d. If ϕ and ψ are formulas, then $[(\phi \to \psi)]^M = 1$ iff either $[\![\phi]\!]^M = 0$ or $[\![\psi]\!]^M = 1$.
 - e. If ϕ and ψ are formulas, then $\llbracket (\phi \leftrightarrow \psi) \rrbracket^M = 1$ iff $\llbracket \phi \rrbracket^M = \llbracket \psi \rrbracket^M$.

Recap: Tautologies, contradictions & contingencies

• a tautological statement is always true: the final column in its truth table contains only the values 1/True, regardless of what the truth values of its atomic statements are

(4)
$$p (p \to p)$$

1 1
0 1

• a logically contradictory statement is always false: the final column of its truth table only contains the values 0/False, regardless of what the truth values of its atomic statements are

(5)	p	$(\neg p)$	$(p \land (\neg p))$
	1	0	0
	0	1	0

• all other statements, with both 1/True and 0/False in the final column of their truth table are called logical contingencies

Logical equivalence & logical consequence

- if a biconditional statement is a logical tautology, then the two constituent statements on either side of the biconditional arrow are logically equivalent
- to denote logical equivalence between two arbitrary expressions *P* and *Q* we write *P* ⇔ *Q*
- if a conditional statement is a logical tautology, we say that the consequent is a logical consequence of the antecedent
- alternatively, we say that the antecedent logically implies the consequent and we write $P \Rightarrow Q$

Logical equivalence: exercise

• let us prove another logical equivalence!

(6) $(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$

Logical equivalence: exercise

Iet us prove another logical equivalence!

(7) $(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$

(8)			
(-)	p	q	(p ightarrow q)
	1	1	1
	1	0	0
	0	1	1
	0	0	1

(9)

p	q	$(\neg p)$	$((\neg p) \lor q)$
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

Formal components of a proof

- we will turn to one of the central uses of statement logic: constructing a proof/argument
- it consists of two parts
 - 1 a number of statements, called **premises**: these are just statements that we, for the sake of argument, assume to be True
 - 2 **conclusion**, whose truth is demonstrated to necessarily follow from the assumed truth of the premises

(10)	premise 1
	premise 2
	 conclusion

- a proof is called **valid** iff there is no uniform assignment of truth values to its atomic statements which makes all its premises true and its conclusion false
- a proof is called **invalid** iff there is at least one uniform assignment of truth values to its atomic statements which makes all its premises true and its conclusion false

Formal components of a proof

- premises and conclusion of a proof are related by the conditional \rightarrow (antecedent \rightarrow conclusion)
- the premises are the antecedent of the conditional
- the conclusion is the consequent of the conditional
 - (11) For a given proof X, if $p_1, p_2, ..., p_n$ are premises of X and q the conlusion of X, then:
 - a. X is valid iff: $((p_1 \land p_2 \land \cdots \land p_n) \rightarrow q)$ is a tautology (i.e. always true)
 - b. X is invalid iff: $((p_1 \land p_2 \land \cdots \land p_n) \rightarrow q)$ is not a tautology (i.e. not always true)
- an example for a simple natural language proof:
 - (12) If Marie eats another pizza, she will get sick. Marie eats another pizza.
 - .: Marie gets sick.

A kind of proof: Modus Ponens

- this proof is called Modus Ponens
 - (13) If Marie eats another pizza, she will get sick. Marie eats another pizza.
 - .:. Marie gets sick.
- we can translate this argument into statement logic:

(14) a.
$$p = Marie$$
 eats another pizza.

- b. q = Marie gets sick.
- thus, we get the following:

(15)
$$(p \rightarrow q)$$

 p
 $\therefore q$

A kind of proof: Modus Ponens

Modus Ponens:

$$(16) \qquad (p \to q) \\ \hline p \\ \hline \vdots \quad q$$

• we can show that the proof is valid with a truth table

(17)					
()	р	q	(p ightarrow q)	$((p ightarrow q) \wedge p)$	$(((p ightarrow q) \land p) ightarrow q)$
	1	1	1	1	1
	1	0	0	0	1
	0	1	1	0	1
	0	0	1	0	1

 premises are connected via ∧, the conclusion is a logical consequence (⇒) if the proof is valid, i.e. if the implication (→) is a tautology

More proofs: Modus Tollens

- the following proof is called Modus Tollens
 - (18) If Jack drinks beer, he will get drunk. Jack doesn't get drunk.
 - ∴ Jack doesn't drink beer.

(19)
$$(p \to q)$$

 $(\neg q)$
 $\therefore (\neg p)$

• again, we can show the validity of the proof by means of a truth table

(20)					
()	p	q	(p ightarrow q)	$((p ightarrow q) \wedge (\neg q))$	$(((p ightarrow q) \land (\neg q)) ightarrow (\neg p))$
	1	1	1	0	1
	1	0	0	0	1
	0	1	1	0	1
	0	0	1	1	1

More proofs: Hypothetical Syllogism

- the following proof is called Hypothetical Syllogism
 - (21) If Jack drinks, he falls asleep. If Jack sleeps, Sue gets angry.
 - \therefore If Jack drinks, Sue gets angry.

(22)
$$(p \rightarrow q)$$

 $(q \rightarrow r)$
 $\therefore (p \rightarrow r)$

• convince yourself of the validity of the proof in the tutorials (or at home) by constructing a truth table!

More proofs: Disjunctive Syllogism

- the next proof is called Disjunctive Syllogism
 - (23) Jill will eat or sleep. Jill will not eat.
 - ∴ Jill will sleep.

$$(24) \qquad \begin{array}{c} (p \lor q) \\ \hline (\neg p) \\ \hline \hline \ddots \quad q \end{array}$$

• the validity of the proof is illustrated by the following truth table

(25)						
()	p	q	$(\neg p)$	$(p \lor q)$	$((p \lor q) \land (\neg p))$	$(((p \lor q) \land (\neg p)) \to q)$
	1	1	0	1	0	1
	1	0	0	1	0	1
	0	1	1	1	1	1
	0	0	1	0	0	1

More proofs: Simplification

- the next proof is called Simplification
 - (26) Bill is short and Marie is tall.∴ Bill is short.

$$(27) \qquad (p \land q) \\ \hline \therefore \quad p$$

• show the validity of the proof with a truth table (solution on next page)

More proofs: Simplification

• here is the truth table that shows the validity of the proof for simplification:

More proofs: Conjunction

- here is a proof called Conjunction
 - (29) Bill is short. Marie is tall.
 - : Bill is short and Marie is tall.

$$(30) \qquad p \ q \ \hline \ddots \quad (p \wedge q)$$

• the validity of the proof by means of a truth table is as follows

More proofs: Addition

• the next proof is called Addition

(32) Bill is short. ∴ Bill is short or the earth is round.

$$(33) \quad \begin{array}{c} p \\ \hline \therefore \quad (p \lor q) \end{array}$$

• show the validity of the proof with a truth table (solution on next page)

More proofs: Addition

• here is the truth table that shows the validity of the proof for addition:

	р	q	$(p \lor q)$	$(p ightarrow (p \lor q))$
	1	1	1	1
(34)	1	0	1	1
	0	1	1	1
	0	0	0	1

- the proof below is an invalid argument!
- this particular logical fallacy is called: fallacy of affirming the consequent

$$(35) \qquad \begin{array}{c} (p \rightarrow q) \\ \hline q \\ \hline \not . p \end{array}$$

- we can show that the proof is invalid with a truth table
- construct the truth table for this invalid proof. what would we expect as truth values in the last column (solution on next page)?

- an invalid proof is defined as a conditional that does not always result in True
- this is illustrated by the following truth table for the fallacy of affirming the consequent

(36)					
()	p	q	(p ightarrow q)	$((p ightarrow q) \wedge q)$	$(((p ightarrow q) \wedge q) ightarrow p)$
	1	1	1	1	1
	1	0	0	0	1
	0	1	1	1	0
	0	0	1	0	1

• fallacy of affirming the consequent:

$$(37) \qquad \begin{array}{c} (p \rightarrow q) \\ \hline q \\ \hline \checkmark & p \end{array}$$

- it is easy to see why the proof is invalid: the truth of *q* does not necessarily entail/imply the truth of the conclusion
- take the following natural language equivalent!
 - (38) If Marie eats another pizza, she will get sick.Marie gets sick.
 - ./. Marie eats another pizza.
- Marie could have gotten sick for a million different reasons

- here is another invalid argument
- this particular logical fallacy is called: fallacy of denying the antecedent

$$(39) \qquad \begin{array}{c} (p \to q) \\ \hline (\neg p) \\ \hline \not . \quad (\neg q) \end{array}$$

- show that the proof is invalid with a truth table (solution on next page)
- recall that an invalid proof is defined as a conditional that does not always result in True

• the truth table for showing the fallacy of denying the antecedent:

(40)

p	q	$(\neg p)$	$(\neg q)$	(p ightarrow q)	$((p ightarrow q) \wedge (\neg p))$	$(((p ightarrow q) \land (\neg p)) ightarrow (\neg q))$
1	1	0	0	1	0	1
1	0	0	1	0	0	1
0	1	1	0	1	1	0
0	0	1	1	1	1	1

• fallacy of denying the antecedent:

(41) $(p \rightarrow q)$ $(\neg p)$ \not . $(\neg q)$

- again, it is easy to see why the proof is invalid: denying the truth of *p* does not necessarily entail/imply the falsity of the conclusion
- Iet us think of a natural language equivalent!
 - (42) If Marie eats another pizza, she will get sick. Marie doesn't eat another pizza.

./. Marie will not get sick.

• Marie can get sick for different reasons, e.g. too many cocktails

Simple proofs

Modus Ponens (43) $(p \rightarrow q)$ р ∴ q **Modus Tollens** (44)

- Addition
- Hypothetical Syllogism (45)

(46)**Disjunctive Syllogism**

$$(p \lor q) \ (\neg p)$$

(47) Simplification
$$(n \land a)$$

$$(p \land q)$$

 $\therefore p$

(48) Conjunction

$$\begin{array}{c} p \\ q \\ \hline \vdots \quad (p \wedge q) \end{array}$$

(50

(49)

$$\frac{p}{\therefore \quad (p \lor q)}$$

Given the premises 1.-5. we can prove the atomic statement t!

)	sim	nple proof:	
	1.	(p ightarrow q)	
	2.	$(p \lor s)$	
	3.	(q ightarrow r)	
	4.	$(s \rightarrow t)$	
	5.	$(\neg r)$	
	6.	$(\neg q)$	3,5 MT
	7.	$(\neg p)$	1,6 MT
	8.	S	2,7 DS
	9.	t	4,8 MP

Complex proofs

- (51) Modus Ponens (56) $(p \rightarrow q)$ p $\therefore q$
- (52) Modus Tollens $(p \rightarrow q)$ $(\neg q)$ $\therefore (\neg p)$ (
- (53) Hyp. Syll. $\begin{array}{c}
 (p \to q) \\
 (q \to r) \\
 \hline
 \therefore \quad (p \to r)
 \end{array}$

(54) **Dis. Syll.** $(p \lor q)$ $(\neg p)$ $\therefore q$

(55) **Simplification** $\frac{(p \land q)}{\therefore p}$

Identity Laws: a. $x \lor False \Leftrightarrow x$ h $x \wedge False \Leftrightarrow False$ $c x \lor True \Leftrightarrow True$ d. $x \wedge True \Leftrightarrow x$ (57) Conditional Laws: a. $(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$ b. $(p \rightarrow q) \Leftrightarrow ((\neg q) \rightarrow (\neg p))$ (58)Commutative Laws: a. $(p \lor q) \Leftrightarrow (q \lor p)$ b. $(p \land q) \Leftrightarrow (q \land p)$ (59) Associative Laws: a. $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ b. $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$

Given the premises 1.-2. we can prove the implication $(p \rightarrow q)$!

- (60) complex proof: 1. $(p \rightarrow (q \lor r))$ 2. $(\neg r)$ 3. $((\neg p) \lor (q \lor r))$ 1 Cond 4. $(((\neg p) \lor q) \lor r)$ 3 Ass 5. $(((\neg p) \lor q) \lor F)$ 4 Neg 6. $(((\neg p) \lor q))$ 5 Ident
 - 7. $(p \rightarrow q)$ 6 Cond