Formale Grundlagen (Logik) Modul 04-006-1001

Statement Logic II

Leipzig University
December $14^{\text {th }}, 2023$

Fabian Heck

(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

Recap: Orderings, cardinality

- an order is a binary relation which is transitive and additionally:
weak order
- reflexive
- anti-symmetric

```
strong order
```

- irreflexive
- asymmetric
- if an order (weak or strong) is also connected (i.e. every distinct element in A is related to another in an ordered pair) then it is a total or linear order
- the cardinality of a set = the number of members/elements inside that set
a. $X=\{a, b, c\}$
b. $|X|=3$
- if sets X and Y are equivalent (one-to-one correspondence), then they are also of the same size; common notation: $X \sim Y$
- equal vs. equivalence: two sets are equal iff they have the same members; set equivalence has to do with the number of members

Recap: Formal systems

- a formal system consists of:
(1) a non-empty set of primitives: the things/objects we are interested in investigating further
2 a set of statements, called axioms, about those primitives
3 a way to reason, i.e. make further statements from these axioms
- we have an intuitive understanding of which reasoning is valid and which is not
- if we accept the truth of the premise of a valid argument, we cannot deny its consequence
- within formal languages we separate between form and content
- syntax: properties of expressions of the system itself, such as its primitives, axioms, rules of inference
- semantics: relations between the system and its models or interpretations

Recap: Statement logic

- we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements.
(2) Basic expressions of statement logic

$$
p, q, r, s, p^{\prime}, p^{\prime \prime}, \ldots
$$

(3) Syntax of statement logic
a. An atomic statement is a well-formed formula.
b. If ϕ is a well-formed formula, then $(\neg \phi)$ is a well-formed formula.
c. If ϕ and ψ are well-formed formulas, then $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and ($\phi \leftrightarrow \psi$) are well-formed formulas.
d. Nothing else is a formula.

Recap: Statement logic

- we can write down the semantic rules like the syntactic rules
- read $\llbracket \rrbracket^{\mathcal{M}}$ as interpreted in relation to model M
(4) Semantics of statement logic
a. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1 \mathrm{iff} \llbracket \phi \rrbracket^{\mathcal{M}}=0$.
b. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
(5) Truth table for negation:

p	$(\neg p)$
1	0
0	1

Recap: Statement logic

- we can write down the semantic rules like the syntactic rules
- read $\llbracket \rrbracket^{\mathcal{M}}$ as interpreted in relation to model M
(6) Semantics of statement logic
a. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1 \mathrm{iff} \llbracket \phi \rrbracket^{\mathcal{M}}=0$.
b. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
(7) Truth table for conjunction:

p	q	$(p \wedge q)$
1	1	1
1	0	0
0	1	0
0	0	0

Recap: Statement logic

- we can write down the semantic rules like the syntactic rules
- read $\llbracket \rrbracket^{\mathcal{M}}$ as interpreted in relation to model M
(8) Semantics of statement logic
a. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1 \mathrm{iff} \llbracket \phi \rrbracket^{\mathcal{M}}=0$.
b. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
(9) Truth table for disjunction:

p	q	$(p \vee q)$
1	1	1
1	0	1
0	1	1
0	0	0

Recap: Statement logic

- we can write down the semantic rules like the syntactic rules
- read $\llbracket \rrbracket^{\mathcal{M}}$ as interpreted in relation to model M
(10) Semantics of statement logic
a. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$.
b. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
(11) Truth table for conditional:

p	q	$(p \rightarrow q)$
1	1	1
1	0	0
0	1	1
0	0	1

Recap: Statement logic

- we can write down the semantic rules like the syntactic rules
- read $\llbracket \rrbracket^{\mathcal{M}}$ as interpreted in relation to model M
(12) Semantics of statement logic
a. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$.
b. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{M}=1$ iff $\llbracket \phi \rrbracket^{M}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
(13) Truth table for biconditional:

p	q	$(p \leftrightarrow q)$
1	1	1
1	0	0
0	1	0
0	0	1

Computing complex truth values

- so far, we've looked at truth tables for expressions that consist of maximally two atomic statements
- but a truth table provides a systematic method to compute the truth value of any expression in statement logic
- the number of rows in a truth table depends on the number of atomic statements: every logical combination has to show up
- if an expression has n atomic statements, then the truth table will have 2^{n} rows
- why 2? ... because we have 2 truth values
- so let us compute the truth values of (depending on the truth values of the atomic statements p, q, and r):
(14) $\quad((p \wedge q) \rightarrow(\neg(p \vee r))$

Computing complex truth values

- so let us compute the truth values of:
(15) $\quad((p \wedge q) \rightarrow(\neg(p \vee r))$

p	q	r	$(p \wedge q)$	$(p \vee r)$	$\neg(p \vee r)$	$((p \wedge q) \rightarrow(\neg(p \vee r))$
1	1	1	1	1	0	0
1	1	0	1	1	0	0
1	0	1	0	1	0	1
1	0	0	0	1	0	1
0	1	1	0	1	0	1
0	1	0	0	0	1	1
0	0	1	0	1	0	1
0	0	0	0	0	1	1

Exercise

- last week, we said that the following holds:
(17) $\quad(p \leftrightarrow q)=((p \rightarrow q) \wedge(q \rightarrow p))$
- prove it!
(18)

p	q	$(p \leftrightarrow q)$
1	1	1
1	0	0
0	1	0
0	0	1

(19)

p	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$((p \rightarrow q) \wedge(q \rightarrow p))$
1	1	1	1	1
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Tautologies

- a (complex) statement is called a logical tautology iff the final column in its truth table contains only the values $1 /$ True, regardless of what the truth values of its atomic statements are
- a tautological statement is true simply because of the meaning of the logical connective(s) in it: this is why the meanings of the individual atomic statements in it don't matter
- another way to express this would be to say that a tautological statement is always true
(20) example of a logical tautology:

$$
(p \rightarrow p)
$$

p	$(p \rightarrow p)$
1	1
0	1

Contradictions

- a (complex) statement is called a logical contradiction iff the final column of its truth table only contains the values $0 /$ False, regardless of what the truth values of its atomic statements are
- similarly to a tautology, a contradictory statement is false simply because of the meaning of the logical connective(s) in it: this is why the meanings of the individual atomic statements in it don't matter
- a logically contradictory statement is always false
(21) example of a logical contradiction:

$$
(p \wedge(\neg p))
$$

p	$(\neg p)$	$(p \wedge(\neg p))$
1	0	0
0	1	0

Contingencies

- an important property of logical tautologies and logical contradictions is that the truth values of the atomic statements in them simply don't matter
- all overall truth values (final column) are either always 1 (tautologies) or always 0 (contradictions)
- all other statements, with both $1 /$ True and $0 /$ False in the final column of their truth table are called logical contingencies
- the idea is that the truth of these statements is contingent (i.e. dependent) on the truth of the atomic statement(s) contained in them
- most of the examples (involving both complex and atomic statements) we've seen so far have been logical contingencies
(22) example of a contingency:

$$
((p \vee q) \rightarrow q)
$$

p	q	$(p \vee q)$	$((p \vee q) \rightarrow q)$
1	1	1	1
1	0	1	0
0	1	1	1
0	0	0	1

Exercise

- among the three complex expressions below, one is a logical tautology, one is a logical contradiction, and one is a logical contingency
(23) a. $\quad(p \rightarrow(q \rightarrow p))$
b. $\quad(p \vee q)$
c. $\quad(\neg(p \vee(\neg p)))$
- say which is which by drawing truth tables for each of the expressions

Exercise

- among the three complex expressions below, one is a logical tautology, one is a logical contradiction, and one is a logical contingency
a. $\quad(p \rightarrow(q \rightarrow p))$
b. $\quad(p \vee q)$
c. $\quad(\neg(p \vee(\neg p)))$
- say which is which by drawing truth tables for each of the expressions
- $(p \rightarrow(q \rightarrow p))$ is a tautology!
(24)

p	q	$(q \rightarrow p)$	$(p \rightarrow(q \rightarrow p))$
1	1	1	1
1	0	1	1
0	1	0	1
0	0	1	1

Exercise

- among the three complex expressions below, one is a logical tautology, one is a logical contradiction, and one is a logical contingency
(23) a. $\quad(p \rightarrow(q \rightarrow p))$
b. $\quad(p \vee p)$
c. $\quad(\neg(p \vee(\neg p)))$
- say which is which by drawing truth tables for each of the expressions
- $(p \vee q)$ is a contingency!
(25)

p	p	$(p \vee p)$
1	1	1
0	0	0

Exercise

- among the three complex expressions below, one is a logical tautology, one is a logical contradiction, and one is a logical contingency
(23) a. $\quad(p \rightarrow(q \rightarrow p))$
b. $\quad(p \vee p)$
c. $\quad(\neg(p \vee(\neg p)))$
- say which is which by drawing truth tables for each of the expressions
- $(\neg(p \vee(\neg p)))$ is a contradiction!
(26)

p	$\neg p$	$(p \vee(\neg p))$	$(\neg(p \vee(\neg p)))$
1	0	1	0
0	1	1	0

reductio ad absurdum

- another way of reasoning (one without truth tables), i.e., proving that some statement is a tautology, is called reductio ad absurdum
- the reasoning works like this (we have done this before):
(1) assume that the statement is in fact not a logical tautology, i.e. you assume that one of its possible truth values is 0
2 then reason "backwards" from this assumption to compute the possible values of the atomic statements in this complex expression
3 if, based on this assumption, you run into a contradiction, then your assumption was wrong and the statement is indeed a tautology
4 if, on the other hand, you don't run into a contradiction, then your assumption was correct after all, and the complex statement is not a logical tautology

reductio ad absurdum: example

- here is an example: suppose we want to prove that $(p \rightarrow(q \rightarrow p))$ is a tautology (see above)
(1) assume that $(p \rightarrow(q \rightarrow p))$ is false:
(27) $\quad(p \rightarrow(q \rightarrow p))$

0
2 reasoning backwards from this assumption, we know that the only way the whole expression can be 0 is if the antecedent is 1 and the consequent is 0

$$
\begin{align*}
& (p \rightarrow(q \rightarrow p)) \tag{28}\\
& 1000
\end{align*}
$$

(3) now we have to give every instance of p the same value (p is a constant)

$$
\left.\begin{array}{c}
(p \rightarrow(q \rightarrow \tag{29}\\
1 \\
1
\end{array} \begin{array}{cc}
0 & 0
\end{array}\right)
$$

4 contradiction: there is no way a conditional $((q \rightarrow p))$ can be false if the consequent (p) is true (this holds independent of the truth value of q)
5 since our assumption that $(p \rightarrow(q \rightarrow p))$ is false has led us to a contradiction, our assumption must be false, hence $(p \rightarrow(q \rightarrow p))$ is a logical tautology

reductio ad absurdum: exercise

- try this line of reasoning with the next example
(30) $\quad(p \vee(\neg p))$
(1) assume that $(p \vee(\neg p))$ is false:
(31) $\quad(p \vee(\neg p))$

0
2 reasoning backwards from this assumption, we know that the only way the whole expression can be 0 is if both disjuncts are 0
(32) $\quad(p \vee(\neg p))$

000
(3) a contradiction: there is no way p can be 0 and $\neg p$ can be 0

4 since our assumption that $(p \vee(\neg p))$ is false has led us to a contradiction, our assumption must be false, hence $(p \vee(\neg p))$ is a logical tautology

Logical equivalence

- if a biconditional statement is a logical tautology, then the two constituent statements on either side of the biconditional arrow are logically equivalent
- in other words: a biconditional between p and q is True precisely if they both are True or if they both are False, hence p and q always need to give back the same truth value for logical equivalence

p	q	$(p \leftrightarrow q)$
1	1	1
1	0	0
0	1	0
0	0	1

- to denote logical equivalence between two arbitrary expressions P and Q (atomic or complex) we write $P \Leftrightarrow Q$
- we have already proven a logical equivalence:

$$
\begin{equation*}
(p \leftrightarrow q) \Leftrightarrow((p \rightarrow q) \wedge(q \rightarrow p)) \tag{34}
\end{equation*}
$$

Logical equivalence: exercise

- let us prove another logical equivalence!
(35) $\quad(\neg(p \vee q)) \Leftrightarrow((\neg p) \wedge(\neg q))$

Logical equivalence: exercise

- let us prove another logical equivalence!
(35) $\quad(\neg(p \vee q)) \Leftrightarrow((\neg p) \wedge(\neg q))$
(36)

p	q	$(p \vee q)$	$(\neg(p \vee q))$
1	1	1	0
1	0	1	0
0	1	1	0
0	0	0	1

(37)

p	q	$(\neg p)$	$(\neg q)$	$((\neg p) \wedge(\neg q))$
1	1	0	0	0
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Logical equivalence

- regardless of the truth values of the atomic statements p and q, the expressions $(\neg(p \vee q))$ and $((\neg p) \wedge(\neg q))$ always have the same truth value
- since two logically equivalent statements have exactly the same truth values in every row of the truth table, one can substitute one for the other in a larger expression E, and vice versa, without changing the truth value of E
- so we can subtitute $((\neg p) \wedge(\neg q))$ with $(\neg(p \vee q))$ (and vice versa)
- another example:

$$
\begin{equation*}
p \Leftrightarrow(p \wedge p) \tag{38}
\end{equation*}
$$

a. $\quad((p \wedge p) \vee q)$
b. substitution: $(p \vee q)$

- the following laws of statement logic define various logic equivalences

Laws of Statement logic

(39) Idempotent Laws:

$$
\begin{array}{ll}
\text { a. } & (P \vee P) \Leftrightarrow P \\
\text { b. } & (P \wedge P) \Leftrightarrow P
\end{array}
$$

(40) Commutative Laws:
a. $\quad(P \vee Q) \Leftrightarrow(Q \vee P)$
b. $\quad(P \wedge Q) \Leftrightarrow(Q \wedge P)$
(41) Associative Laws:
a. $\quad((P \vee Q) \vee R) \Leftrightarrow(P \vee(Q \vee R))$
b. $\quad((P \wedge Q) \wedge R) \Leftrightarrow(P \wedge(Q \wedge R))$
(42) Identity Laws:
a. $\quad(P \vee$ False $) \Leftrightarrow P$
b. $\quad(P \wedge$ False $) \Leftrightarrow$ False
c. $\quad(P \vee$ True $) \Leftrightarrow$ True
d. $\quad(P \wedge$ True $) \Leftrightarrow P$
(43) Distributive Laws:
a. $\quad(P \vee(Q \wedge R)) \Leftrightarrow((P \vee Q) \wedge(P \vee R))$
b. $\quad(P \wedge(Q \vee R)) \Leftrightarrow((P \wedge Q) \vee(P \wedge R))$
(44) Complement Laws:
a. $\quad(P \vee(\neg P)) \Leftrightarrow$ True
b. $\quad(\neg(\neg P)) \Leftrightarrow P$
c. $\quad(P \wedge(\neg P)) \Leftrightarrow$ False
(45) DeMorgan's Laws:
a. $\quad(\neg(P \vee Q)) \Leftrightarrow((\neg P) \wedge(\neg Q))$
b. $\quad(\neg(P \wedge Q)) \Leftrightarrow((\neg P) \vee(\neg Q))$

Laws of Statement logic

(46) Conditional Laws:
a. $\quad(P \rightarrow Q) \Leftrightarrow((\neg P) \vee Q)$
b. $\quad(P \rightarrow Q) \Leftrightarrow((\neg Q) \rightarrow(\neg P))$
(47) Biconditional Laws:
a. $\quad(P \leftrightarrow Q) \Leftrightarrow((P \rightarrow Q) \wedge(Q \rightarrow P))$
b. $\quad(P \leftrightarrow Q) \Leftrightarrow(((\neg P) \wedge(\neg Q)) \vee(P \wedge Q))$

Logical consequence

- if a conditional statement is a logical tautology, we say that the consequent is a logical consequence of the antecedent (antecedent \rightarrow consequent)
- alternatively, we say that the antecedent logically implies the consequent, and we write this as $P \Rightarrow Q$
(48) example of a logical consequence:

$$
(((p \rightarrow q) \wedge q) \rightarrow q)
$$

p	q	$(p \rightarrow q)$	$((p \rightarrow q) \wedge q)$	$(((p \rightarrow q) \wedge q) \rightarrow q)$
1	1	1	1	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

- the rightmost column shows the conditional statement of which we want to find out if its consequent q is a logical consequence of the antecedent $((p \rightarrow q) \wedge q)$
- since every value in this column is True, the conditional is a tautology, and hence q is also a logical consequence of $((p \rightarrow q) \wedge q)$
- so we write: $((p \rightarrow q) \wedge q) \Rightarrow q$

