Formale Grundlagen (Logik) Modul 04-006-1001

More on Relations

Leipzig University

November $23^{\text {th }}, 2023$

Fabian Heck
(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

A question from the last session

- Can a Cartesian Product be formed with more than two sets?
- not with our definition, we have used so far:
(1) $A \times B=_{\operatorname{def}}\{\langle x, y\rangle \mid x \in A$ and $y \in B\}$
(2) $\{a, b\} \times\{1,2\}=\left\{\begin{array}{l}\langle a, 1\rangle,\langle a, 2\rangle, \\ \langle b, 1\rangle,\langle b, 2\rangle\end{array}\right\}$
- it is, however, easy to come with a definition for three sets:
(3) $A \times B \times C={ }_{d e f}\{\langle x, y, z\rangle \mid x \in A$ and $y \in B$ and $z \in C\}$

- a generalized definition would look like this:
(5) $X_{1} \times \cdots \times X_{n}={ }_{\text {def }}\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in X_{i}\right.$ for every $\left.i \in\{1, \ldots, n\}\right\}$

Recap: Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
(6) \quad a. $A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(7) $Q=\{\langle a, 3\rangle,\langle b, 4\rangle,\langle c, 1\rangle\}$

Recap: Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- partial functions do not satify the second condition
(9) a. $A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(10) $S=\{\langle a, 1\rangle,\langle b, 2\rangle\}$

Recap: Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- if the first condition is not satisifed, a relation is not a function
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(13) $T=\{\langle a, 2\rangle,\langle b, 3\rangle,\langle a, 4\rangle,\langle c, 1\rangle\}$

Recap: Functions

- functions from A to B are in general said to be into B (also called into functions) if the range of the function is a subset of B
- if the range of a function equals B, then the function is said to be onto B (also called onto functions or surjective functions)
- a function from A to B is called one-to-one (injective) iff no member of B gets mapped to by more than one member of A
- a function which is both one-to-one and onto is called a one-to-one correspondence (or bijective function)

G (into, many-to-one)

Recap: Functions

- given two functions $F: A \rightarrow B$ and $G: B \rightarrow C$, we can form a new function from A to C, the composite of F and G, written as $G \circ F$
F :

G:

- the identity function is a function that maps each element of a set to itself: $F: A \rightarrow A$, written as $i d_{A}$ A :

Recap: Relations

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- "is taller than" = irreflexive, "is equal to" = reflexive, "is financial supporter of" = non-reflexive
- given a set A and a relation R in $A(R \subseteq A \times A), R$ is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- "self-employed" = symmetric, anti-symmetric, "friend of" = non-symmetric, "father of" = asymmetric, and "cousin of" = symmetric

Transitivity

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is transitive iff for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the pair $\langle x, z\rangle$ is also in R
- a relation that is not transitive is called non-transitive
- a relation is intransitive if for no pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the ordered pair $\langle x, z\rangle$ is in R
(15) $A=\{1,5,27\}$
a. $\quad R_{1}=\{\langle 1,5\rangle,\langle 5,1\rangle,\langle 1,1\rangle\}$
b. $\quad R_{2}=\{\langle 5,5\rangle\}$
c. $\quad R_{3}=\{\langle 1,5\rangle,\langle 5,27\rangle,\langle 1,27\rangle,\langle 5,1\rangle,\langle 1,1\rangle,\langle 5,5\rangle\}$
d. $\quad R_{4}=\{\langle 1,27\rangle,\langle 27,5\rangle,\langle 1,5\rangle,\langle 27,27\rangle\}$
e. $R_{5}=\{\langle 1,27\rangle,\langle 27,5\rangle,\langle 5,1\rangle\}$
- R_{1} is non-transitive since the transitive relation for $\langle 5,1\rangle$ and $\langle 1,5\rangle$ is missing (which would be $\langle 5,5\rangle$)
- R_{2} is transitive
- R_{3} and R_{4} are both transitive because for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$, there is also $\langle x, z\rangle$
- R_{5} is intransitive: even though there are ordered pairs of the form $\langle x, y\rangle$ and $\langle y, z\rangle$, it does not contain pairs of the form $\langle x, z\rangle$

Transitivity

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is transitive iff for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the pair $\langle x, z\rangle$ is also in R
- a relation that is not transitive is called non-transitive
- a relation is intransitive if for no pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the ordered pair $\langle x, z\rangle$ is in R
- what about the relations (in the set of human beings) "mother of", "older than", and "like" (the verb)?

Transitivity

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is transitive iff for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the pair $\langle x, z\rangle$ is also in R
- a relation that is not transitive is called non-transitive
- a relation is intransitive if for no pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the ordered pair $\langle x, z\rangle$ is in R
- what about the relations (in the set of human beings) "mother of", "older than", and "like" (the verb)?
- "mother of" = intransitive,

Transitivity

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is transitive iff for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the pair $\langle x, z\rangle$ is also in R
- a relation that is not transitive is called non-transitive
- a relation is intransitive if for no pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the ordered pair $\langle x, z\rangle$ is in R
- what about the relations (in the set of human beings) "mother of", "older than", and "like" (the verb)?
- "mother of" = intransitive, "older than" = transitive

Transitivity

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is transitive iff for all ordered pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the pair $\langle x, z\rangle$ is also in R
- a relation that is not transitive is called non-transitive
- a relation is intransitive if for no pairs $\langle x, y\rangle$ and $\langle y, z\rangle$ in R, the ordered pair $\langle\boldsymbol{x}, z\rangle$ is in R
- what about the relations (in the set of human beings) "mother of", "older than", and "like" (the verb)?
- "mother of" = intransitive, "older than" = transitive, "like" = non-transitive

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
(16) $A=\{5,6,9\}$
a. $\quad R_{1}=\{\langle 5,6\rangle,\langle 9,5\rangle,\langle 6,9\rangle,\langle 6,6\rangle\}$
b. $\quad R_{2}=\{\langle 5,5\rangle,\langle 6,6\rangle,\langle 9,9\rangle\}$
c. $\quad R_{3}=\{\langle 6,5\rangle,\langle 9,6\rangle\}$
- R_{1} is connected because all distinct pairs in A (5 and 6, 6 and 9, 5 and 9) are represented as ordered pairs in R_{1}
- R_{2} is non-connected because none of the distinct pairs in A are represented in R_{2} as distinct members of an ordered pair
- R_{3} is also non-connected: an ordered pair consisting of the members 5 and 9 is missing

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
- what about the relations "father of", "bigger than" (defined on individuals), "greater than" (defined on \mathbb{N}), and "same hair color as"?

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
- what about the relations "father of", "bigger than" (defined on individuals), "greater than" (defined on \mathbb{N}), and "same hair color as"?
- "father of" = not connected

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
- what about the relations "father of", "bigger than" (defined on individuals), "greater than" (defined on \mathbb{N}), and "same hair color as"?
- "father of" = not connected, "bigger than" = not connected

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
- what about the relations "father of", "bigger than" (defined on individuals), "greater than" (defined on \mathbb{N}), and "same hair color as"?
- "father of" = not connected, "bigger than" = not connected, "greater than" = connected

Connectedness

- given a set A and a relation R in $A(R \subseteq A \times A), R$ is connected or connex iff for every two distinct elements x and y in A, the pair $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$ or both
- what about the relations "father of", "bigger than" (defined on individuals), "greater than" (defined on \mathbb{N}), and "same hair color as"?
- "father of" = not connected, "bigger than" = not connected, "greater than" = connected, "same hair color as" = not connected

Properties of R^{-1} and R^{\prime}

- recall that the inverse of a relation $R\left(=R^{-1}\right)$ is simply R with the members inside each ordered pair reversed
- and that the complement of a relation $R\left(=R^{\prime}\right)$ contains all the ordered pairs (in the Cartesian Product of which R is a subset) that are not in R
- certain properties are preserved from R to R^{-1} and R^{\prime}

$R($ not $\varnothing)$	R^{-1}	R^{\prime}
reflexive	reflexive	irreflexive
irreflexive	irreflexive	reflexive
symmetric	symmetric	symmetric
asymmetric	asymmetric	non-symmetric
antisymmetric	antisymmetric	depends on R
transitive	transitive	depends on R
intransitive	intransitive	depends on R
connected	connected	depends on R

Properties of R^{-1} and R^{\prime}

- let us have a closer look at the reflexivity properties

$R($ not $\varnothing)$	R^{-1}	R^{\prime}
reflexive	reflexive	irreflexive
irreflexive	irreflexive	reflexive
\ldots	\ldots	\ldots

- by definition, a reflexive relation R contains all pairs of the form $\langle x, x\rangle$
- since R^{-1} has all pairs of R but with the order reversed, every pair $\langle x, x\rangle$ will also be in R^{-1}
- if R is reflexive, it contains all pairs $\langle x, x\rangle$, hence there are no pairs $\langle x, x\rangle$ left to be in R^{\prime}
- this necessarily makes R^{\prime} irreflexive
- the same logic can be applied to the second row

Properties of R^{-1} and R^{\prime}

- now let us consider symmetry properties

$R(\operatorname{not} \varnothing)$	R^{-1}	R^{\prime}
\ldots	\cdots	\cdots
symmetric	symmetric	symmetric
asymmetric	asymmetric	non-symmetric

- by definition, a relation R is asymmetric if it contains pairs of the form $\langle x, y\rangle$, but not their respective counterparts $\langle y, x\rangle$
- if R contains the pairs $\langle x, y\rangle$, the inverse R^{-1} contains the pairs $\langle y, x\rangle$ instead of the pairs $\langle x, y\rangle$, hence it is also asymmetric
- R^{\prime}, however, still contains symmetric pairs, hence it is non-symmetric
a. $\quad A=\{a, b, c\}$
b. $\quad R=\{\langle a, b\rangle,\langle a, c\rangle\}$

$$
\begin{equation*}
R^{\prime}=\{\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle b, a\rangle,\langle c, a\rangle,\langle b, c\rangle,\langle c, b\rangle\} \tag{18}
\end{equation*}
$$

- which ordered pairs make R^{\prime} non-symmetric?

Properties of R^{-1} and R^{\prime}

- now let us consider symmetry properties

$R($ not $\varnothing)$	R^{-1}	R^{\prime}
\ldots	\ldots	\ldots
symmetric	symmetric	symmetric
asymmetric	asymmetric	non-symmetric

- by definition, a relation R is symmetric if for every pair of the form $\langle x, y\rangle$, there exists also the counterpart $\langle y, x\rangle$
- the inverse R^{-1} simply reverses the order of elements within the pairs $\langle y, x\rangle$ and $\langle x, y\rangle$
- so we can conclude that if R is symmetric then $R^{-1}=R$
- but why is R^{\prime} also symmetric?

Properties of R^{-1} and R^{\prime}

- now let us consider symmetry properties

$R($ not $\varnothing)$	R^{-1}	R^{\prime}
\ldots	\ldots	\ldots
symmetric	symmetric	symmetric
asymmetric	asymmetric	non-symmetric

- why is R^{\prime} also symmetric?
- because the opposite assumption leads to an absurd conclusion!
(1) assumption: R is symmetric and R^{\prime} is non-symmetric
$2 R^{\prime}$ contains pairs of the form $\langle x, y\rangle$ but not their $\langle y, x\rangle$ counterparts
3 if pair $\langle y, x\rangle$ is not in R^{\prime}, then it must be in $\left(R^{\prime}\right)^{\prime}$ which is R
4 but since R is symmetric, R must also contain $\langle x, y\rangle$
5 this leads to an absurd conclusion: $\langle x, y\rangle$ is in R but also in R^{\prime}
(6) thus we conclude that our initial assumption is false

7 if R^{\prime} cannot be non-symmetric, it must be symmetric

- this mode of reasoning is also called a reductio ad absurdum proof in logic (proof by contradiction)

Equivalence relations and classes

- an equivalence relation is one which is reflexive, symmetric, and transitive
- "=" is the most typical equivalence relation; others are: "same height as" or "same age as "
- for every equivalence relation there is a natural way to divide the set for which it is defined into mutally exclusive (disjoint) subsets, called equivalence classes
- an equivalence class $[x]$ is a set of all elements that are related to x by some equivalence relation
$[x]=\{y \mid\langle x, y\rangle \in R\}$, where R is an equivalence relation
- every pair of equivalence classes (i.e., a pair of sets) is disjoint (has no shared members)
- example: given a set A, R is an equivalence relation (why?)
(20) a. $A=\{$ book, hook, bat, hat $\}$
b. $\quad R \subseteq A \times A=\{\langle$ book, book \rangle,\langle hook, hook \rangle,\langle hat, hat \rangle,\langle bat, bat \rangle, \langle book, hook \rangle,\langle hook, book \rangle,\langle hat, bat \rangle,\langle bat, hat $\rangle\}$
c. 2 equivalence classes defined by R : $\{$ book, hook $\}$ and $\{$ bat, hat $\}$
- what is the equivalence relation R from (20) in natural language? "rhymes with"

Partitions

- there is a close correspondence between equivalence classes and partitions
- given a non-empty set A, a partition of A is a collection of non-empty subsets of A such that
(1) for any two distinct subsets X and $Y, X \cap Y=\varnothing$

2 the union of all the subsets equals A

- members of a partition are called the cells of the partition
(21) Let $A=\{a, b, c, d, e\}$. Then $P=\{\{a, c\},\{b, e\},\{d\}\}$ is a partition of A, because:
\leadsto every cell of P is disjoint, i.e.

$$
\{a, c\} \cap\{b, e\}=\varnothing ;\{b, e\} \cap\{d\}=\varnothing ;\{a, c\} \cap\{d\}=\varnothing
$$

\leadsto the big union of the cells equals A, i.e. $\{a, c\} \cup\{b, e\} \cup\{d\}=\{a, b, c, d, e\}$

- are the following sets partitions of A ?
a. $P_{1}=\{\{a, b, c\},\{d, e\}\}$ yes
b. $\quad P_{2}=\{\{a, b, c\},\{e\}\}$ no
c. $P_{3}=\{\{a\},\{b\},\{c\},\{d\},\{e\}\}$ yes
d. $P_{4}=\{\{a, b, c\},\{d, e, c\}\}$ no
e. $P_{5}=\{\{a, b, c, d, e\}\} \quad$ yes

Partitions and equivalence relations

- there is a close correspondence between equivalence classes and partitions
(23) Given a partition of set A, the relation $R=\{\langle x, y\rangle \mid x$ and y are in the same cell of the partition $\}$ is an equivalence relation.
(24) Given an equivalence relation R in A, there exists a partition of A in which x and y are in the same cell iff x and y are related by R
- equivalence classes specified by R are simply the cells of the partition
- an equivalence relation in A is sometimes said to induce a partition of A
- here is an example going from equivalence relation to partition
a. $\quad A=\{1,2,3,4\}$
b. $\quad R=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 3,4\rangle,\langle 4,3\rangle\}$
c. 2 equivalence classes defined by $R:\{1,2\}$ and $\{3,4\}$
d. partition on A, induced by R : $P_{R}=\{\{1,2\},\{3,4\}\}$

Partitions and equivalence relations

- there is a close correspondence between equivalence classes and partitions
(26) Given a partition of set A, the relation $R=\{\langle x, y\rangle \mid x$ and y are in the same cell of the partition $\}$ is an equivalence relation.
(27) Given an equivalence relation R in A, there exists a partition of A in which x and y are in the same cell iff x and y are related by R
- equivalence classes specified by R are simply the cells of the partition
- an equivalence relation in A is sometimes said to induce a partition of A
- we can also go from a partition to the equivalence relation
(28) a. $B=\{1,2,3,4,5\}$
b. partition on B, induced by $R: Q_{R}=\{\{1,2\},\{3,5\},\{4\}\}$
c. 3 equivalence classes defined by $R:\{1,2\}$ and $\{3,5\}$ and $\{4\}$
d. $R=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 3,3\rangle,\langle 5,5\rangle,\langle 3,5\rangle,\langle 5,3\rangle,\langle 4,4\rangle\}$

Exercise

- provide equivalence relation, equivalence classes and the partition
(29) a. $\quad X=\{$ France, Ghana, Belgium, Ecuador, Brazil $\}$
b. $\quad R=$ is on the same continent as
(30) a. partition on X, induced by R : $P_{R}=\{\{$ France, Belgium $\},\{$ Ecuador, Brazil $\},\{$ Ghana $\}\}$
b. 3 equivalence classes defined by R : \{France, Belgium\} and \{Ecuador, Brazil\} and \{Ghana\}
c. $\quad R=\{\langle$ France, France \rangle,\langle Belgium, Belgium \rangle,\langle France, Belgium \rangle,\langle Belgium, France \rangle, \langle Ecuador, Ecuador \rangle,\langle Brazil, Brazil \rangle,\langle Ecuador, Brazil \rangle,\langle Brazil, Ecuador \rangle,〈Ghana, Ghana〉\}

Orderings

- an ordering is a binary relation which is transitive and additionally:

weak order

- reflexive
- anti-symmetric

$$
\begin{array}{|c|}
\hline \text { strong order } \\
\hline \text { irreflexive } \\
\bullet \text { asymmetric }
\end{array}
$$

- which of the following relations on set A are orderings? if so, are they strong or weak orderings?
(31) $A=\{a, b, c, d\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle a, c\rangle,\langle a, d\rangle,\langle b, c\rangle,\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle\}$ weak
b. $\quad R_{2}=\{\langle b, a\rangle,\langle c, b\rangle,\langle c, a\rangle\}$ strong
c. $R_{3}=\{\langle a, b\rangle,\langle a, d\rangle,\langle b, c\rangle,\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle\} \quad$ not an order
d. $R_{4}=\{\langle d, c\rangle,\langle d, b\rangle,\langle d, a\rangle,\langle c, b\rangle,\langle c, a\rangle,\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle,\langle d, d\rangle,\langle b, a\rangle\}$
e. $R_{5}=\{\langle a, b\rangle,\langle a, c\rangle,\langle a, d\rangle,\langle b, c\rangle\}$
f. $\quad R_{6}=\{\langle b, a\rangle,\langle b, b\rangle,\langle a, a\rangle,\langle c, c\rangle,\langle d, d\rangle,\langle c, b\rangle,\langle c, a\rangle\}$
g. $\quad R_{7}=\{\langle d, c\rangle,\langle d, b\rangle,\langle d, a\rangle,\langle c, b\rangle,\langle c, a\rangle,\langle b, a\rangle\}$
h. $R_{8}=\{\langle a, b\rangle,\langle a, c\rangle,\langle a, d\rangle,\langle b, c\rangle,\langle d, a\rangle\}$

