Formale Grundlagen (Logik) Modul 04-006-1001

Relations \& Functions

Leipzig University

November $16^{\text {th }}$, 2023

Fabian Heck

(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

Recap: Set theoretic equalities

- last time we looked at general laws about set equivalence relations
(1) Idempotent Laws

2 Commutative Laws
(3) Associative Laws
(4) Distributive Laws

5 Identity Laws
6 Complement Laws
(7) DeMorgan's Laws

8 Consistency Principle

- these laws help us deal with complex expressions over sets

Recap: Set theoretic equalities

(1) Idempotent Laws:
a. $\quad X \cup X=X$
b. $\quad X \cap X=X$
(2) Commutative Laws:
a. $\quad X \cup Y=Y \cup X$
b. $\quad X \cap Y=Y \cap X$
(3) Associative Laws:
a. $\quad(X \cup Y) \cup Z=X \cup(Y \cup Z)$
b. $\quad(X \cap Y) \cap Z=X \cap(Y \cap Z)$
(4) Identity Laws:
a. $\quad X \cup \varnothing=X$
b. $\quad X \cap \varnothing=\varnothing$
c. $\quad X \cup U=U$
d. $X \cap U=X$
(5) Distributive Laws:
a. $\quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
b. $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(6) Complement Laws:
a. $\quad A \cup A^{\prime}=U$
b. $\left(A^{\prime}\right)^{\prime}=A$
c. $A \cap A^{\prime}=\varnothing$
d. $\quad A-B=A \cap B^{\prime}$
(7) DeMorgan's Laws:
a. $\quad(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
b. $\quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
(8) Consistency Principle:
a. $\quad X \subseteq Y$ iff $X \cup Y=Y$
b. $X \subseteq Y$ iff $X \cap Y=X$

Recap: Relations

- an (ordered) tuple is a finite, ordered collection of members
(9)
a. $\quad X=\langle a, b, c, d\rangle$
a. $\quad X=\langle b, b, b\rangle$
b. $\quad Y=\langle d, c, b, a\rangle$
b. $\quad Y=\langle b\rangle$
c. $\quad X \neq Y$
c. $\quad X \neq Y$
- important subtype of tuples: tuples which consist of exactly two members: ordered pairs
- we can derive tuples, in particular ordered pairs, from sets by forming the Cartesian Product of these sets
(11) $A \times B={ }_{\text {def }}\{\langle x, y\rangle \mid x \in A$ and $y \in B\}$
(12) $\{a, b\} \times\{1,2\}=\left\{\begin{array}{l}\langle a, 1\rangle,\langle a, 2\rangle, \\ \langle b, 1\rangle,\langle b, 2\rangle\end{array}\right\}$
- ordered pairs can be understood as instances of a relation
- relations form subsets of sets created by the Cartesian Product
(13) $R \subseteq A \times B$

Recap: Relations

- the smallest sets A and B such that $R \subseteq A \times B$ (for some given R) are $A=\{a \mid\langle a, b\rangle \in R$ for some $b\}$ and $B=\{b \mid\langle a, b\rangle \in R$ for some $a\}$
- A and B are the projections onto R 's first and second coordinate
- $A=$ domain of $R ; B=$ the range of R
- the set complement R^{\prime} contains all the ordered pairs in the Cartesian product of A and B which are not members of the relation R
(14) $\quad R^{\prime}={ }_{d e f}(A \times B)-R$
- the inverse of a relation \mathbf{R}, written as R^{-1}, is the set containing all the ordered pairs in R, but with the first and second member in each ordered pair reversed

Functions

- a function is a special kind of relation
- functions are central to our study of meaning in natural language also called natural language semantics
- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- in other words:
(1) every member of A is used at most once as the first coordinate of the ordered pairs in R
2 every member of A is used at least once as the first coordinate of the ordered pairs in R
- the first condition is what makes R a function, the second condition is what makes the function total

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relations P, Q, R from sets A to B are total functions because every member in A is used exactly once
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(16) a. $P=\{\langle a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle\}$
b. $\quad Q=\{\langle a, 3\rangle,\langle b, 4\rangle,\langle c, 1\rangle\}$
c. $\quad R=\{\langle a, 3\rangle,\langle b, 2\rangle,\langle c, 2\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relations P from sets A to B is a total function because every member in A is used exactly once
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(18) $P=\{\langle a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relation Q from sets A to B is a total function because every member in A is used exactly once
(20) \quad a. $A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(21) $Q=\{\langle a, 3\rangle,\langle b, 4\rangle,\langle c, 1\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relation R from sets A to B is a total function because every member in A is used exactly once
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(24) $R=\{\langle a, 3\rangle,\langle b, 2\rangle,\langle c, 2\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relations S, T, V from sets A to B are NOT total functions - why?
(26) a. $A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(27) a. $S=\{\langle a, 1\rangle,\langle b, 2\rangle\}$
b. $\quad T=\{\langle a, 2\rangle,\langle b, 3\rangle,\langle a, 4\rangle,\langle c, 1\rangle\}$
c. $\quad V=\{\langle a, 2\rangle,\langle a, 3\rangle,\langle b, 4\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relation S from sets A to B is not a total function because not every member in A is used
(28)
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(29) $S=\{\langle a, 1\rangle,\langle b, 2\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relation T from sets A to B is not a total function (not even a partial one, see below) because the element a is related to both 2 and 4
(31) a. $A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(32) $T=\{\langle a, 2\rangle,\langle b, 3\rangle,\langle a, 4\rangle,\langle c, 1\rangle\}$

Functions

- for a relation R from A to B to count as a total function, two conditions must simultaneously hold:
(1) each element in the domain of R is paired with only one element in the range
2 the domain of R is equal to A
- the relation V from sets A to B is not a (total) function because not every member in A is used and a relates to both 2 and 3
a. $\quad A=\{a, b, c\}$
b. $B=\{1,2,3,4\}$
(35) $\quad V=\{\langle a, 2\rangle,\langle a, 3\rangle,\langle b, 4\rangle\}$

Function talk, set talk

- a function that is a subset of $A \times B$ is called a function from A to B, also written as $F: A \rightarrow B$
- a function that is a subset of $A \times A$ is called a function in A
- members of the domain of a function are called its arguments
- members of the range of a function are called its values
- functions can also be presented more dynamically:
(37) $\quad F(a)=2$
- regularly used in mathematics where the pairing of argument and value is often specified by operations such as division and addition, etc.
- we will stick with the more static set-theoretic talk here
a. $\quad F(x)=x+1$
b. $F=\{\langle x, y\rangle \mid y=x+1\}$

Partial functions

- the conditions for functionhood we gave above identified total functions
(1) each element in the domain of R is paired with only one element in the range
(2) the domain of R is equal to A
- a partial function is a function that does not satisfy the second condition
(1) each element in the domain of R is paired with only one element in the range
(2) the domain of R is equal to A
- recall the relations S, T, V from sets A to B - which one is a partial function?
a. $\quad A=\{a, b, c\}$
b. $\quad B=\{1,2,3,4\}$
a. $\quad S=\{\langle a, 1\rangle,\langle b, 2\rangle\}$
b. $\quad T=\{\langle a, 2\rangle,\langle b, 3\rangle,\langle a, 4\rangle,\langle c, 1\rangle\}$
c. $\quad V=\{\langle a, 2\rangle,\langle a, 3\rangle,\langle b, 4\rangle\}$

Partial functions

- the conditions for function we gave above identified total functions
(1) each element in the domain of R is paired with only one element in the range
(2) the domain of R is equal to A
- a partial function is a function that does not satisfy the second condition
(1) each element in the domain of R is paired with only one element in the range

2) the domain of R is equal to A

- S is a partial function!

$$
\begin{equation*}
\text { a. } \quad A=\{a, b, c\} \tag{41}
\end{equation*}
$$

(42) $S=\{\langle a, 1\rangle,\langle b, 2\rangle\}$

$$
\begin{equation*}
\text { b. } \quad B=\{1,2,3,4\} \tag{43}
\end{equation*}
$$

Exercise

- say why or why not the following relations are
- not functions
- total functions
- partial functions
(44) a. $F=\{\langle x, y\rangle \mid y=$ mother of $x\}$
b. $\quad G=\{\langle x, y\rangle \mid y=$ brother of $x\}$
c. $\quad Q=\{\langle x, y\rangle \mid y=$ twin of $x\}$

Exercise

- say why or why not the following relations are
- not functions
- total functions
- partial functions
(44) a. $F=\{\langle x, y\rangle \mid y=$ mother of $x\}$
b. $\quad G=\{\langle x, y\rangle \mid y=$ brother of $x\}$
c. $\quad Q=\{\langle x, y\rangle \mid y=$ twin of $x\}$
- F is a function since no one has more than one (biological) mother; F is a total function since everybody has a (biological) mother

Exercise

- say why or why not the following relations are
- not functions
- total functions
- partial functions
(44) a. $F=\{\langle x, y\rangle \mid y=$ mother of $x\}$
b. $\quad G=\{\langle x, y\rangle \mid y=$ brother of $x\}$
c. $\quad Q=\{\langle x, y\rangle \mid y=$ twin of $x\}$
- F is a total function since everybody has a (biological) mother; F is a function since no one has more than one (biological) mother
- G is not a function since a person can have more than one brother

Exercise

- say why or why not the following relations are
- not functions
- total functions
- partial functions
a. $F=\{\langle x, y\rangle \mid y=$ mother of $x\}$
b. $\quad G=\{\langle x, y\rangle \mid y=$ brother of $x\}$
c. $\quad Q=\{\langle x, y\rangle \mid y=t$ twin of $x\}$
- F is a total function since everybody has a (biological) mother; F is a function since no one has more than one (biological) mother
- G is not a function since a person can have more than one brother
- Q is a partial function since not everyone has a twin sibling; Q is a function since there can only be one twin for each x

More function talk

- it is sometimes useful to state whether the range of a function from A to B is equal to the set B
- functions from A to B are in general said to be into B (also called into functions) if the range of the function is a subset of B
- if the range of a function equals B, then the function is said to be onto B (also called onto functions or surjective functions)
- which of the illustrated functions are into? which are onto? F :

$Q:$

G:

- F and Q are onto (surjective) functions, G is not
- F, Q, G are into functions

More function talk

- A function from A to B is called one-to-one (injective) iff no member of B gets mapped to by more than one member of A
- A function that is not one-to-one is sometimes called many-to-one
- a function which is both one-to-one and onto is called a one-to-one correspondence (surjective + injective = bijective function)
- how can we apply these terms to the following functions? F :

Q :

G:

More function talk

- A function from A to B is called one-to-one (injective) iff no member of B gets mapped to by more than one member of A
- A function that is not one-to-one is sometimes called many-to-one
- a function which is both one-to-one and onto is called a one-to-one correspondence (surjective + injective = bijective function)
- how can we apply these terms to the following functions? F :

Q :

- F and G are many-to-one functions

More function talk

- A function from A to B is called one-to-one (injective) iff no member of B gets mapped to by more than one member of A
- A function that is not one-to-one is sometimes called many-to-one
- a function which is both one-to-one and onto is called a one-to-one correspondence (surjective + injective = bijective function)
- how can we apply these terms to the following functions? F :

Q :

- F and G are many-to-one functions
- Q is a one-to-one correspondence

Function composition

- we can combine two functions to create a third function
- given two functions $F: A \rightarrow B$ and $G: B \rightarrow C$, we can form a new function from A to C.
- this new function is called the composite of F and G, written as $G \circ F$
(45) $G \circ F={ }_{\operatorname{def}}\{\langle x, z\rangle \mid$ for some $y,\langle x, y\rangle \in F$ and $\langle y, z\rangle \in G\}$
- below we illustrate with an example:
F :

G :

- $G \circ F$ only produces sets of ordered pairs if the range of F is not disjoint from the domain of $G(\operatorname{range}(F) \cap \operatorname{domain}(G) \neq \emptyset)$

Exercise

- provide the composites:
(46) a. $\quad S=\{\langle a, 5\rangle,\langle f, 6\rangle,\langle g, 7\rangle\}$
b. $\quad T=\{\langle 6$, Marge $\rangle,\langle 7$, Homer $\rangle,\langle 5$, Lisa $\rangle\}$
c. $T \circ S=$
(47) a. $\quad W=\{\langle$ English, $C\rangle,\langle$ German, $R\rangle,\langle$ French, $V\rangle\}$
b. $\quad X=\{\langle C$, Marge $\rangle,\langle Q$, Homer $\rangle,\langle R$, Lisa $\rangle,\langle V$, Bart $\rangle\}$
c. $\quad X \circ W=$

Exercise

- provide the composites:
a. $S=\{\langle a, 5\rangle,\langle f, 6\rangle,\langle g, 7\rangle\}$
b. $\quad T=\{\langle 6$, Marge $\rangle,\langle 7$, Homer $\rangle,\langle 5$, Lisa $\rangle\}$
c. $\quad T \circ S=\{\langle a$, Lisa $\rangle,\langle f$, Marge $\rangle,\langle g$, Homer $\rangle\}$
(47) a. $\quad W=\{\langle$ English, $C\rangle,\langle$ German, $R\rangle,\langle$ French, $V\rangle\}$
b. $\quad X=\{\langle C$, Marge $\rangle,\langle Q$, Homer $\rangle,\langle R$, Lisa $\rangle,\langle V$, Bart $\rangle\}$
c. $\quad X \circ W=$

Exercise

- provide the composites:
a. $S=\{\langle a, 5\rangle,\langle f, 6\rangle,\langle g, 7\rangle\}$
b. $\quad T=\{\langle 6$, Marge $\rangle,\langle 7$, Homer $\rangle,\langle 5$, Lisa $\rangle\}$
c. $\quad T \circ S=\{\langle a$, Lisa $\rangle,\langle f$, Marge $\rangle,\langle g$, Homer $\rangle\}$
(47) a. $\quad W=\{\langle$ English, $C\rangle,\langle$ German, $R\rangle,\langle$ French, $V\rangle\}$
b. $\quad X=\{\langle C$, Marge $\rangle,\langle Q$, Homer $\rangle,\langle R$, Lisa $\rangle,\langle V$, Bart $\rangle\}$
c. $\quad X \circ W=\{\langle$ German, Lisa \rangle,\langle English, Marge \rangle,\langle French, Bart $\rangle\}$

Identity functions

- the identity function is a function that maps each element of a set to itself: $F: A \rightarrow A$, written as $i d_{A}$
(48) $F={ }_{d e f}\{\langle x, x\rangle \mid x \in A\}$
- we illustrate again with an example:

- for a function $F: A \rightarrow B$, the following holds:
(49) \quad a. $\quad F \circ i d_{A}=F$
b. $\quad i d_{B} \circ F=F$

Back to relations

- we will now discuss the following properties of binary relations
(1) reflexivity

2 symmetry

- these properties apply to relations in a set, e.g. in $A \times A$, not to relations from A to B, where $B \neq A$

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- every irreflexive relation is non-reflexive, but not every non-reflexive relation is irreflexive
(50) $A=\{1,2,3\}$
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle\}$
b. $\quad R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
c. $\quad R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle,\langle 3,1\rangle\}$
d. $\quad R_{4}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,2\rangle\}$

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- every irreflexive relation is non-reflexive, but not every non-reflexive relation is irreflexive
(50) $\quad A=\{1,2,3\}$
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle\}$
b. $\quad R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
c. $\quad R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle,\langle 3,1\rangle\}$
d. $\quad R_{4}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,2\rangle\}$
- R_{1} is non-reflexive because it lacks the ordered pair $\langle 2,2\rangle$

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- every irreflexive relation is non-reflexive, but not every non-reflexive relation is irreflexive
(50) $A=\{1,2,3\}$
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle\}$
b. $\quad R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
c. $\quad R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle,\langle 3,1\rangle\}$
d. $\quad R_{4}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,2\rangle\}$
- R_{1} is non-reflexive because it lacks the ordered pair $\langle 2,2\rangle$
- R_{2} is reflexive: every member x of A is represented in R_{2} in the form $\langle x, x\rangle$

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- every irreflexive relation is non-reflexive, but not every non-reflexive relation is irreflexive
(50) $A=\{1,2,3\}$
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle\}$
b. $\quad R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
c. $\quad R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle,\langle 3,1\rangle\}$
d. $\quad R_{4}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,2\rangle\}$
- R_{1} is non-reflexive because it lacks the ordered pair $\langle 2,2\rangle$
- R_{2} is reflexive: every member x of A is represented in R_{2} in the form $\langle x, x\rangle$
- R_{3} is also reflexive, although some members of A are of the form $\langle x, y\rangle$ (e.g. $\langle 3,2\rangle$)

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- every irreflexive relation is non-reflexive, but not every non-reflexive relation is irreflexive
(50) $A=\{1,2,3\}$
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle\}$
b. $\quad R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
c. $\quad R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,2\rangle,\langle 1,2\rangle,\langle 3,1\rangle\}$
d. $\quad R_{4}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 3,2\rangle\}$
- R_{1} is non-reflexive because it lacks the ordered pair $\langle 2,2\rangle$
- R_{2} is reflexive: every member x of A is represented in R_{2} in the form $\langle x, x\rangle$
- R_{3} is also reflexive, although some members of A are of the form $\langle x, y\rangle$ (e.g. $\langle 3,2\rangle$)
- R_{4} is irreflexive because none of its ordered pairs is of the form $\langle x, x\rangle$

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- what about the relations "is taller than", "is equal to", and "is a financial supporter of" (in the set of human beings)?

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- what about the relations "is taller than", "is equal to", and "is a financial supporter of" (in the set of human beings)?
- "is taller than" = irreflexive

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- what about the relations "is taller than", "is equal to", and "is a financial supporter of" (in the set of human beings)?
- "is taller than" = irreflexive, "is equal to" = reflexive

Reflexivity

- given a set A and a relation R in A, R is reflexive iff for every x in A there is an ordered pair of the form $\langle x, x\rangle$ in R
- a relation that is not reflexive is called non-reflexive
- a relation which contains no ordered pair of the form $\langle x, x\rangle$ is irreflexive
- what about the relations "is taller than", "is equal to", and "is a financial supporter of" (in the set of human beings)?
- "is taller than" = irreflexive, "is equal to" = reflexive, "is a financial supporter of" = non-reflexive

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ and $\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ and $\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $\quad R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$
- R_{1} is symmetric

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ and $\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$
- R_{1} is symmetric
- R_{2} is non-symmetric: the ordered pair $\langle a, b\rangle$ does not have a reverse

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ and $\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $\quad R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$
- R_{1} is symmetric
- R_{2} is non-symmetric: the ordered pair $\langle a, b\rangle$ does not have a reverse
- R_{3} is symmetric (for $\langle b, b\rangle$, the reverse is also true), as well as anti-symmetric ($b=b$)

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ and $\langle\boldsymbol{y}, \boldsymbol{x}\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$
- R_{1} is symmetric
- R_{2} is non-symmetric: the ordered pair $\langle a, b\rangle$ does not have a reverse
- R_{3} is symmetric (for $\langle b, b\rangle$, the reverse is also true), as well as anti-symmetric ($b=b$)
- R_{4} is asymmetric because none of the members has a corresponding reverse

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation for which it is never the case that for an ordered pair $\langle x, y\rangle,\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
(51) $A=\{a, b, c\}$
a. $\quad R_{1}=\{\langle a, b\rangle,\langle b, a\rangle\}$
b. $\quad R_{2}=\{\langle c, b\rangle,\langle b, c\rangle,\langle a, b\rangle\}$
c. $\quad R_{3}=\{\langle b, b\rangle\}$
d. $\quad R_{4}=\{\langle a, b\rangle,\langle b, c\rangle\}$
e. $R_{5}=\{\langle a, c\rangle,\langle b, b\rangle\}$
- R_{1} is symmetric
- R_{2} is non-symmetric: the ordered pair $\langle a, b\rangle$ does not have a reverse
- R_{3} is symmetric (for $\langle b, b\rangle$, the reverse is also true), as well as anti-symmetric ($b=b$)
- R_{4} is asymmetric because none of the members has a corresponding reverse
- R_{5} is non-symmetric (the pair $\langle a, c\rangle$ doesn't have a reverse) and also anti-symmetric (the only pair for which there is a reverse is of the reflexive type: $\langle b, b\rangle$)

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- what about the relations: "is self-employed by", "is friend of", "is father of", and "is cousin of"?

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- what about the relations: "is self-employed by", "is friend of", "is father of", and "is cousin of"?
- "is self-employed by" = symmetric, anti-symmetric

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- what about the relations: "is self-employed by", "is friend of", "is father of", and "is cousin of"?
- "is self-employed by" = symmetric, anti-symmetric, "is friend of" = non-symmetric

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- what about the relations: "is self-employed by", "is friend of", "is father of", and "is cousin of"?
- "is self-employed by" = symmetric, anti-symmetric, "is friend of" = non-symmetric, "is father of" = asymmetric

Symmetry

- given a set A and a relation R in A, R is symmetric iff for every ordered pair $\langle x, y\rangle$ in R, the pair $\langle y, x\rangle$ is also in R
- a relation that is not symmetric is called non-symmetric
- a relation in which it is never the case that for an ordered pair $\langle x, y\rangle$, $\langle y, x\rangle$ is also a member, is asymmetric
- a relation is anti-symmetric if whenever both $\langle x, y\rangle$ and $\langle y, x\rangle$ are in R, then $x=y$
- what about the relations: "is self-employed by", "is friend of", "is father of", and "is cousin of"?
- "is self-employed by" = symmetric, anti-symmetric, "is friend of" = non-symmetric, "is father of" = asymmetric, and "is cousin of" = symmetric

