Formale Grundlagen (Logik) Modul 04-006-1001

Set theory III: ordered sets, relations

Leipzig University

October $26^{\text {th }}, 2023$

Fabian Heck
(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

Recap: Empty set, set membership, subsets

- the empty set is a set with no members, formally notated as: \varnothing (or: $\}$)
- the empty set is a subset of every set:
(1) $\varnothing \subseteq Y$, for any set Y
- this follows from our definition of subsets:
(2) For any two sets X and Y, if every member of X is a member of Y, then X is a subset of Y
- for X not to be a subset of Y, X must have at least one member that is not in Y
- but the empty set by definition has no members
- hence, the empty set is a subset of every set

Recap: Empty set, set membership, subsets

- member of a set \neq subset of a set
- consider the following sets:
(3) a. $A=\{$ Mercury, Venus, Earth, Mars, Jupiter $\}$
b. $\quad B=\{$ Mars $\}$
c. $X=\{$ Mercury, Venus, Earth, $\{$ Mars $\}$, Jupiter $\}$
- Mars is a member of A : Mars $\in A$
- Mars is not a subset of A : Mars $\nsubseteq A$ (Mars is not a set)
- B is a subset of $A: B \subseteq A$ (every member in B, which is only Mars, is also in A)
- B is a member of $X: B \in X$
- B is a not a subset of $X: B \nsubseteq X$ (Mars is a member of B but not $X)$
- $\{\{$ Mars $\}\}$ is a subset of $X:\{\{$ Mars $\}\} \subseteq X$

Recap: set operations

set union:

(4) $A \cup B={ }_{d e f}$ $\{x \mid x \in A$ or $\mathrm{x} \in B\}$
(5)

Recap: set operations

set difference:
(8) $A-B={ }_{d e f}$ $\{x \mid x \in A$ and $x \notin B\}$

set complement:
(10) $A^{\prime}={ }_{\operatorname{def}}\{x \mid x \notin A\}$
(11)

Set operations: exercise

- provide the newly formed sets:
(12) a. $Y=\{y \mid y$ is yellow $\}$
b. $Y^{\prime}=$
a. $Q=\{\alpha, \gamma, 100,3,4,5\}, M=\{\alpha, \gamma, \beta, 102$, Hulk, 5$\}$
b. $\quad Q-\mathcal{M}=$
c. $M-Q=$
(14) a. $X=\varnothing, G=\{a, b, c\}$
b. $\wp(G)=$
c. $G-X=$
d. $X-G=$

Set operations: exercise

- provide the newly formed sets:
(12) a. $Y=\{y \mid y$ is yellow $\}$
b. $\quad Y^{\prime}=\{y \mid y$ is not yellow $\}$
a. $\quad Q=\{\alpha, \gamma, 100,3,4,5\}, M=\{\alpha, \gamma, \beta, 102$, Hulk, 5$\}$
b. $\quad Q-M=\{100,3,4\}$
c. $\quad M-Q=\{\beta, 102$, Hulk $\}$
a. $\quad X=\varnothing, G=\{a, b, c\}$
b. $\wp(G)=\{\{a, b, c\},\{a, b\},\{b, c\},\{a, c\},\{a\},\{b\},\{c\}, \varnothing\}$
c. $\quad G-X=\{a, b, c\}=G$
d. $\quad X-G=\varnothing$

Set operations: exercise

- provide the set relations for the Venn diagrams
(15)

(16)

(17)

Set operations: exercise

- provide the set relations for the Venn diagrams
(15)

(16) B

(17)
$B \cap C$

Set operations: exercise

- provide the set relations for the Venn diagrams
(18)

(19)

(20)

Set operations: exercise

- provide the set relations for the Venn diagrams
(18)

(19) $A-(B \cup C)$

(20) U

Set theoretic equalities

- there are a number of general laws pertaining to sets which follow from the definitions of union, intersection etc.
- these laws help us deal with complex expressions over sets
- most of these are quite intuitive, or will be once we draw Venn Diagrams for them
(1) Idempotent Laws

2 Commutative Laws
3 Associative Laws
4 Distributive Laws
5 Identity Laws
6 Complement Laws
7 DeMorgan's Laws (Augustus De Morgan, 1806-1871, English mathematician)
8 Consistency Principle

Set theoretic equalities

- Idempotent Laws: everything which is in X or in X simply amounts to everything which is in X, similarly for everything which is in X and in X
(21) a. $\quad X \cup X=X$
b. $\quad X \cap X=X$
- Commutative Laws: everything which is in X or in Y (or both) is the same as everything which is in Y or in X (or both); same goes for intersection
a. $\quad X \cup Y=Y \cup X$
b. $\quad X \cap Y=Y \cap X$

Set theoretic equalities

- Associative Laws: the order in which we combine three sets by the operation of union does not matter, and the same is true if the operation is intersection
a. $\quad(X \cup Y) \cup Z=X \cup(Y \cup Z)$
b. $\quad(X \cap Y) \cap Z=X \cap(Y \cap Z)$
- Identity Laws: evident from the definitions of union, intersection, the empty set, and the universal set
a. $\quad X \cup \varnothing=X$
(25) a. $\quad X \cup U=U$
b. $\quad X \cap \varnothing=\varnothing$
b. $\quad X \cap U=X$

Set theoretic equalities

- Distributive Laws:

$$
\begin{array}{ll}
\text { a. } & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \tag{26}\\
\text { b. } & A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{array}
$$

- we illustrate with Venn diagrams for $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(27)
$B \cup C$

(28) $A \cap(B \cup C)$

(29) $A \cap B$

(30) $A \cap C$

(31) $(A \cap B) \cup(A \cap C)$

Set theoretic equalities

- Complement Laws:
a. $\quad A \cup A^{\prime}=U$
b. $\quad\left(A^{\prime}\right)^{\prime}=A$
a. $\quad A \cap A^{\prime}=\varnothing$
b. $\quad A-B=A \cap B^{\prime}$
- we illustrate with Venn diagrams for $A-B=A \cap B^{\prime}$
(34) $\quad A-B$

(35)

(36) $A \cap B^{\prime}$

Set theoretic equalities

- DeMorgan's Laws:
(37) a. $\quad(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
b. $\quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
- we illustrate with Venn diagrams for $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(38) $A \cup B$

(39) $(A \cup B)^{\prime}$

(40) A^{\prime}

(41)

(42) $\quad A^{\prime} \cap B^{\prime}$

Set theoretic equalities

- Consistency Principle: concerned with the mutual consistency of the definitions of union, intersection, and subset (iff = if and only if)
(43) \quad a. $\quad X \subseteq Y$ iff $X \cup Y=Y$
b. $X \subseteq Y$ iff $X \cap Y=X$

Set theoretic equalities

- why are we thinking about set theoretic equalities?
- because we can simplify set-theoretic complex expressions by applying these laws; here is an example:
(45) $(A \cup B) \cup(B \cap C)^{\prime}=U$
(46) $(A \cup B) \cup(B \cap C)^{\prime}$

$$
\begin{aligned}
& =(A \cup B) \cup\left(B^{\prime} \cup C^{\prime}\right) \\
& =A \cup\left(B \cup\left(B^{\prime} \cup C^{\prime}\right)\right) \\
& =A \cup\left(\left(B \cup B^{\prime}\right) \cup C^{\prime}\right) \\
& =A \cup\left(U \cup C^{\prime}\right) \\
& =A \cup\left(C^{\prime} \cup U\right) \\
& =A \cup U \\
& =U
\end{aligned}
$$

$\operatorname{DeMorgan}_{(X \cap Y)^{\prime}=X^{\prime} \cup Y^{\prime}}$
Associative $_{(X \cup Y) \cup Z=X \cup(Y \cup Z)}$
Associative $_{(X \cup Y) \cup Z=X \cup(Y \cup Z)}$
Complement $_{X \cup X^{\prime}=U}$
Commutative $_{X \cup Y=Y \cup X}$ Identity $X^{\prime} \cup U=U$ Identity ${ }_{X \cup U}=U$

From sets to tuples

- members of a set are unordered

$$
\begin{array}{ll}
\text { a. } & A=\{a, b, c, d\} \tag{47}\\
\text { b. } & B=\{d, c, b, a\} \\
\text { c. } & A=B
\end{array}
$$

- we will now introduce a new type of mathematical object, where the order of the members does matter: the (ordered) tuple
- an (ordered) tuple is a finite, ordered collection of members
- the members of an ordered tuple are written in pointy brackets: \rangle
(48) a. $X=\langle a, b, c, d\rangle$
b. $\quad Y=\langle d, c, b, a\rangle$
c. $\quad X \neq Y$
a. $\quad X=\langle b, b, b\rangle$
b. $\quad Y=\langle b\rangle$
c. $X \neq Y$

From sets to tuples

- we will mostly be concerned with a subtype of tuples, i.e. tuples which consist of exactly two members: ordered pairs, example:
(50) $\quad X=\langle a, b\rangle$
- we can derive tuples, in particular ordered pairs, from sets
- the Cartesian Product of sets A and B , written as $A \times B$, is the set consisting of all ordered pairs formed from the sets A and B, where the first element of the pair is taken from A and the second element from B

$$
\begin{align*}
& A \times B=\operatorname{def}\{\langle x, y\rangle \mid x \in A \text { and } y \in B\} \tag{51}\\
& \{a, b\} \times\{1,2\}=\left\{\begin{array}{l}
\langle a, 1\rangle,\langle a, 2\rangle, \\
\langle b, 1\rangle,\langle b, 2\rangle
\end{array}\right\} \tag{52}
\end{align*}
$$

- the Cartesian Product creates a set; the members of this set, e.g. $\langle a, 1\rangle,\langle a, 2\rangle$, etc., are not ordered relative to each other; but the members of each ordered pair are ordered

From sets to tuples: exercise

- the Cartesian Product of sets A and B, written as $A \times B$, is the set consisting of all ordered pairs formed from the sets A and B, where the first element of the pair is taken from A and the second element from B

$$
\begin{align*}
& A \times B==_{\operatorname{def}}\{\langle x, y\rangle \mid x \in A \text { and } y \in B\} \tag{53}\\
& \{a, b\} \times\{1,2\}=\left\{\begin{array}{c}
\langle a, 1\rangle,\langle a, 2\rangle, \\
\langle b, 1\rangle,\langle b, 2\rangle
\end{array}\right\} \tag{54}
\end{align*}
$$

- create the following sets:
$X=\{$ Homer, Marge $\} ; Y=\{$ Bart, Lisa $\}$
a. $\quad X \times Y=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
b. $\quad Y \times X=\{\langle$ Bart, Homer \rangle,\langle Bart, Marge \rangle,\langle Lisa, Homer \rangle,\langle Lisa, Marge $\rangle\}$
c. $\quad Y \times Y=\{\langle$ Bart, Bart \rangle,\langle Bart, Lisa \rangle,\langle Lisa, Bart \rangle,\langle Lisa, Lisa $\rangle\}$
- relations are built from Cartesian Products, ordered pairs can express instances of a relation
- what is the relation described by $X \times Y$ in (55)? what is the relation described by $Y \times X$?
- $X \times Y$ expresses the relation "parent (of)"; $Y \times X$ expresses the relation "child (of)"

Relations

- informally, a relation expresses a connection between elements of two sets
- example: "mother of" is a relation that holds between the elements of two sets of people, specifically mothers and their children
- in natural language, a relationship is expressed by a linguistic object that we call predicate
- example: the transitive verb "eat" denotes a relation between elements of two sets of objects, the eaters and the eatees

Relations

- relations form subsets of sets created by the Cartesian Product
(56) $R \subseteq A \times B$
- the smallest sets A and B such that $R \subseteq A \times B$ (for some given R) are $A=\{a \mid\langle a, b\rangle \in R$ for some $b\}$ and $B=\{b \mid\langle a, b\rangle \in R$ for some $a\}$
- these two sets are called the projections of R onto the first and second coordinate, respectively
- the projection of R onto the first coordinate is called the domain of R
- the projection of R onto the second coordinate is called the range of R

Relations

- we will again look at a concrete example:
(57) a. $X=\{$ Homer, Bart, Marge $\}$
b. $\quad Y=\{$ Bart, Lisa $\}$
(58) Cartesian Product: $X \times Y=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Bart, Bart \rangle, \langle Bart, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
- now we define relation "parent of" as a set $C \subseteq X \times Y$ such that: in each ordered pair in C, the first member is a parent of the second
a. $\quad C=\{\langle a, b\rangle \mid a$ parent of $b\}$
b. $\quad C=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
(60) a. domain of $C=\{$ Homer, Marge $\}$
b. range of $C=\{$ Bart, Lisa $\}$

Relations

- relations can also be illustrated with diagrams such as the one below
(61) $\{\langle a, 2\rangle,\langle b, 2\rangle,\langle b, 4\rangle,\langle c, 3\rangle,\langle d, 1\rangle\}$

Relations

- since relations are sets, we can also provide the set complement of a relation
- let us come back to our original example:
a. $\quad X=\{$ Homer, Bart, Marge $\}$
b. $\quad Y=\{$ Bart, Lisa $\}$
a. $\quad X \times Y=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Bart, Bart \rangle, \langle Bart, Lisa \rangle,\langle Marge, Bart,\langle Marge, Lisa $\rangle\}$
b. $\quad C=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
- the set complement for some relation $R \subseteq A \times B$ is formally given below:

$$
\begin{equation*}
R^{\prime}={ }_{d e f}(A \times B)-R \tag{65}
\end{equation*}
$$

- the set complement R^{\prime} contains all the ordered pairs in the Cartesian product of A and B which are not members of the relation R
- for our set C above we can now form C^{\prime}

$$
\begin{equation*}
C^{\prime}=\{\langle\text { Bart, Bart }\rangle,\langle\text { Bart, Lisa }\rangle\} \tag{66}
\end{equation*}
$$

Relations

- we can also form the inverse of a relation
- again we look at our original example:
(67) a. $X=\{$ Homer, Bart, Marge $\}$
b. $Y=\{$ Bart, Lisa $\}$
a. $\quad X \times Y=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Bart, Bart \rangle, \langle Bart, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
b. $\quad C=\{\langle$ Homer, Bart \rangle,\langle Homer, Lisa \rangle,\langle Marge, Bart \rangle,\langle Marge, Lisa $\rangle\}$
- the inverse of a relation R, written as R^{-1}, is the set containing all the ordered pairs in R, but with the first and second member in each ordered pair reversed
- for our set C above we can now form C^{-1}
(69) $C^{-1}=\{\langle$ Bart, Homer \rangle,\langle Lisa, Homer \rangle,\langle Bart, Marge \rangle,\langle Lisa, Marge $\rangle\}$

Relations: exercise

- given the sets X and Y :
(70)
a. $X=\{2,4,1\}$
b. $\quad Y=\{3,2\}$
- form the Cartesian Product $X \times Y$
- define the relation "greater than" as a set $C \subseteq X \times Y$ such that: in each ordered pair in C, the first member is greater then the second; also provide C
- what is the domain and the range of the relation C ?
- form C^{\prime} and C^{-1}
(71) Cartesian Product:

$$
X \times Y=\{\langle 2,3\rangle,\langle 2,2\rangle,\langle 4,3\rangle,\langle 4,2\rangle,\langle 1,3\rangle,\langle 1,2\rangle\}
$$

(72) a. $C=\{\langle a, b\rangle \mid a$ is greater than $b\}$
b. $C=\{\langle 4,3\rangle,\langle 4,2\rangle\}$
(73) a. domain of $\mathrm{C}=\{4\}$
b. range of $\mathrm{C}=\{3,2\}$
a. $\quad C^{\prime}=\{\langle 2,3\rangle,\langle 2,2\rangle,\langle 1,3\rangle,\langle 1,2\rangle\}$
b. $\quad C^{-1}=\{\langle 3,4\rangle,\langle 2,4\rangle\}$

