# Formale Grundlagen (Logik) Modul 04-006-1001 

Introduction, Set Theory I

Leipzig University

October $19^{\text {th }}, 2023$

Fabian Heck
(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

## Introduction

- main goal of this course: introduction to the basics of formal logic, so that you may eventually apply the skills you learn here to understand the logical basis of natural language
- logic is a system of truth and inference:
- determines the conditions under which a proposition ( $\approx$ sentence) is true or false
- inferring whether a given proposition is true or false given what we know about the truth or falsehood of a different proposition
- topics of this course:
- set theory (Mengenlehre)
- relations, functions
- logical operators: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- truth tables (Wahrheitstafeln)
- ways to set up proofs
- logic provides us with many of the tools to do formal semantics (meaning of natural language sentences)


## Set Theory

- set theory forms a central part of logic and involves the formal study of sets
- invented by Georg Cantor (German mathematician, 1845-1918) in 1874
- what is a set?


## Notion of a set

A set is a collection of distinct, unordered, potentially unbounded, abstract objects.

- these objects are called members or elements of the set
- the notation for a set is $\}$
- the members of a set are enclosed within these brackets
(1) $A=\{a, b, c, d, e, f\}$
- this is called a list notation of a set (because the members of the set A are simply listed)


## Set Theory

- what is a set?


## Notion of a set

A set is a collection of distinct, unordered, potentially unbounded, abstract objects.

- what does distinct mean?
- this feature points to the fact that repetition of a member does not change the set
- so the set in (2) is not a set containing five members; rather, it's exactly the same as a set containing a single member, namely $x$
(2) $A=\{x, x, x, x, x\}=\{x\}$
- other properties related to set-membership:
(1) an object is either a member of a set or not

2 there is no such thing as a halfway, multiple, or gradual membership

## Set Theory

- what is a set?

> Notion of a set
> A set is a collection of distinct, unordered, potentially unbounded, abstract objects.

- what does unordered mean?
- simply that: the relative order of the set members in which they are listed does not matter
- so the sets $A$ and $B$ in (3) are the same set, i.e. $A=B$
- they contain the same members, but with different orders
(3) $A=\{a, b, c, d\}, B=\{d, a, b, c\}$
- in this sense, sets are crucially different from another type of logical object, namely an ordered ( n -)tuple


## Set Theory

- what is a set?

> Notion of a set
> A set is a collection of distinct, unordered, potentially unbounded, abstract objects.

- what does potentially unbounded mean?
- there is no limit to the number of members it can have
- example: the set containing the natural numbers is a set with an infinite number of members
- another example: the students participating in this course (finite)
- we could even have a set containing no members at all: this would be the empty set, conventionally written as: $\varnothing$ (or, alternatively, as $\}$ )


## Set Theory

- what is a set?

> Notion of a set
> A set is a collection of distinct, unordered, potentially unbounded, abstract objects.

- what does abstract mean?
- set members can be literally anything!
- here are some examples of possible sets:
- the set of all prime numbers
- the set of all characters of the Simpsons
- this random set: $\{1,3, \psi, 5.3\}$
- another random set: $\{b, a, 4, x, \alpha$, ,
- a bunch of animals: $\{$, Ce, An, M, M\}


## Set Theory

－recursive sets：since a set can contain members of any kind，it can also contain other sets as members
（4）$A=\{a, y,\{2, d\}, \beta, \boldsymbol{\nabla}, 3\}$
－when we talk about the members of a set，it is important to keep separate the objects／concepts vs．the names of the object
－we typically use names or descriptions to refer to objects
－when a set contains those names or descriptions，it refers to the objects that these names denote，and not to the names themselves
－if we want to refer to the names rather than the objects，we enclose the name inside single quotes（convention）

$$
\begin{align*}
& \text { vs. } \\
& B=\{H u l k\}=\left\{\begin{array}{c}
\text { 是 } \\
\text { 是 }
\end{array}\right\} \tag{5}
\end{align*}
$$

## Set Theory with Venn Diagrams

- so far we have used list notations which list the members of a set from left to right
- this implies an order but we said that order does not really matter
- a more intuitive way of illustrating sets (without implying order) is via Venn diagrams (John Venn, English mathematician, logician, 1834-1923)
(6) $B=\{y, x, a, d\}$

list notation

(7)


Venn diagram

## Set Theory with predicate notation

- instead of listing the members of a set, we could simply describe the set by naming a property that all of its members share
- this is called predicate notation
(8) a. $A=\{$ Homer, Bart, Maggie, Marge, Lisa $\}$
b. $A=\{x \mid \mathrm{x}$ is a Simpson $\}$
predicate notation
- the | should be read as "such that"
- one advantage of predicate notation over list notation is that it can be easlily used to describe sets with a very large or even infinite number of members
(9) a. $B=\{x \mid x$ is blue $\}$
b. $\quad C=\{x \mid x$ is a star in the sky $\}$
c. $D=\{x \mid x$ is related to Tom Hanks $\}$


## Superset and subset

- a fundamental type of relationship between two sets is the subset-superset relationship
(10) For any two sets $X$ and $Y$, if every member of $X$ is a member of $Y$, then:
a. $X$ is a subset of $Y$, and
b. $\quad Y$ is a superset of $X$

subset relation is notated with $\subseteq$ : $X \subseteq Y$
superset relation is notated with $\supseteq$ :
$Y \supseteq X$


## Superset and subset

- an example:
(12) a. $B=\{x \mid x$ is a cat $\}$
b. $C=\{y \mid y$ is an animal $\}$

every cat is also an animal...
$\ldots$ thus, every member of $B$ (the set of cats) is also a member of $C$ (the set of animals)
$B \subseteq C$ and $C \supseteq B$


## Superset and subset

- another example:
(14) a. $D=\{$ earth $\}$
b. $E=\{y \mid y$ is a planet $\}$

earth is a planet...
... thus, the only member of $D$ (earth) is also a member of $E$ (the set of planets)
$D \subseteq E$ and $E \supseteq D$


## Superset and subset: Exercise

- What is the relation between the sets in (16)?
(16) a. $B=\{x \mid x$ is a Simpson $\}$
b. $C=\{y \mid \mathrm{y}$ is a fictional character on TV $\}$
- What is the relation between the sets in (17)?
a. $A=\{a, y,\{2, d\}, \beta, \bigvee, 3\}$
b. $F=\{y, \beta\}$
c. $G=\{y, 4, \beta\}$
- solutions:
(18) $B \subseteq C$ and $C \supseteq B$
(19) a. $F \subseteq A$ and $A \supseteq F$
b. $\quad G \nsubseteq A$ and $A \nsupseteq G$
c. $F \subseteq G$ and $G \supseteq F$


## Proper subset

- consider the following sets:
(20) a. $\quad D=\{$ Joe Biden $\}$
b. $E=\{x \mid x$ is the current president of the USA $\}$
(21)

$D=E$ because they have identical membership: the current president of the USA describes the same individual as Joe Biden, so ...
$D \subseteq E$ and $E \subseteq D$


## Proper subset

- why? let us go back to our definition:
(22) For any two sets $X$ and $Y$, if every member of $X$ is a member of $Y$, then:
a. $X$ is a subset of $Y$, and
b. $\quad Y$ is a superset of $X$

$D \subseteq E$ and $E \subseteq D$
because every member of $D$ is also a member of $E$ and every member of $E$ is also a member of $D$
hence: every set is a subset of itself (namely the subset that is identical to the set)


## Proper subset

- if we want to exclude the case of a set being a subset of itself, we need to define a proper subset
(24) A set $X$ is a proper subset of a set $Y$ if:
a. every member of $X$ is also a member of $Y$, but
b. not every member of $Y$ is a member of $X$ (i.e. $Y$ has at least one member that is not in $X$ )
- many of the set relations we have looked at so far qualify as proper subset relations
- we write $X \subset Y$ to indicate proper subsethood
- general subsethood is still written as $X \subseteq Y$
- the difference between proper subset $\subset$ and subset $\subseteq$ is the additional $=$ which indicates that only proper subsets exclude identity


## Proper subset

- an example:
a. $X=\{a, b\}$
b. $\quad Y=\{a, b, c, d, e\}$

$X$ is a subset of $Y$ because every member of $X$ is also a member of $Y(X \subseteq Y)$
but $X$ is also a proper subset of $Y$ because not every member of $Y$ is a member of $X$, so ...
$X \subset Y$


## Superset, subset, proper subset: Exercise

- What is the relation between the sets in (27)?
a. $B=\{x \mid x$ is a Simpson $\}$
b. $C=\{y \mid \mathrm{y}$ is a fictional character on TV $\}$
- What is the relation between the sets in (28)?
a. $A=\{a, y,\{2, d\}, \beta, \bigvee, 3\}$
b. $F=\{y, \beta\}$
c. $G=\{y, 4, \beta\}$
a. $F \subseteq A$ and $A \supseteq F$
b. $F \subset A$
c. $\quad G \nsubseteq A$ and $A \nsupseteq G$
d. $F \subseteq G$ and $G \supseteq F$
e. $F \subset G$
- What is the relation between the sets in (29)?
a. $G=\{y, 4, \beta\}$
b. $H=\{y, 4, \beta\}$
(32) a. $\quad G \subseteq H$ and $H \subseteq G$
b. $G \not \subset H$ and $H \not \subset G$

