Formale Grundlagen (Logik) Modul 04-006-1001

Predicate Logic IV

Leipzig University
February $1^{\text {st }}, 2024$

Fabian Heck
(Slides based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

Recap: Vocabulary of predicate logic

(1) individual constants: $\{$ dan, norbert, $m, j, \ldots\} \rightarrow$ terms

2 individual variables: $\{x, y, z, \ldots\} \rightarrow$ terms
(3) predicate constants: $\{C, D, L, \ldots\}$
4) connectives: $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$
5) auxiliary symbols: (,), [,]
(6) quantifiers: \forall universal, \exists existential

Recap: Syntax of predicate logic

(1) Syntax of predicate logic
a. If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\delta\left(t_{1}, \ldots, t_{n}\right)$ is a well-formed formula.
b. If ϕ is a formula, then $(\neg \phi)$ is a well-formed formula.
c. If ϕ and ψ are formulas, then $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and ($\phi \leftrightarrow \psi$) are well-formed formulas.
d. If ϕ is a formula and x is an individual variable, then $(\forall x) \phi$ and $(\exists x) \phi$ are well-formed formulas.
e. Nothing else is a formula.

Recap: Semantics of predicate logic

(2) Semantics of predicate logic
a. If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\llbracket \delta\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{M}}=1 \mathrm{iff}\left\langle\llbracket t_{1} \rrbracket^{\mathcal{M}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{M}}\right\rangle \in \llbracket \delta \rrbracket^{\mathcal{M}}$.
b. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff either $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
f. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.

Recap: Semantics of predicate logic with quantifiers

- the trick: let the open statement in the scope of the quantifier assume a truth-value temporarily
- specifically, we let the variable take on the values of all the individuals in the domain D one by one and see what truth value the statement would have for each of these individuals
(3) a. $\llbracket(\forall x) H(x) \rrbracket^{M}=$ TRUE iff $\llbracket x \rrbracket^{M} \in \llbracket H \rrbracket^{M}$ for all individuals in D; if for even one element in $D, \llbracket x \rrbracket^{\mathcal{M}} \notin \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\forall x) H(x) \rrbracket^{M}=F A L S E$
b. $\llbracket(\exists x) H(x) \rrbracket^{\mathcal{M}}=$ TRUE iff $\llbracket x \rrbracket^{M} \in \llbracket H \rrbracket^{M}$ for at least one individual in D; if for no element in $D, \llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\exists x) H(x) \rrbracket^{M}=F A L S E$

Semantics of quantifiers: assignment functions

- the rules in (4-a,b) both make reference to $\llbracket x \rrbracket^{\mathcal{M}}$, i.e. the denotation of a variable
- strictly speaking, such a denotation is not available in our models so far
- what the wordings "for all individuals in D "/"for at least one individual in D ", respectively, suggest, is that we need a means to have a variable assume one or more particular values
(4) a. $\llbracket(\forall x) H(x) \rrbracket^{\mathcal{M}}=$ TRUE iff $\llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$ for all individuals in D; if for even one element in $D, \llbracket x \rrbracket^{\mathcal{M}} \notin \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\forall x) H(x) \rrbracket^{\mathcal{M}}=F A L S E$
b. $\llbracket(\exists x) H(x) \rrbracket^{\mathcal{M}}=$ TRUE iff $\llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$ for at least one individual in D; if for no element in $D, \llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\exists x) H(x) \rrbracket^{\mathcal{M}}=F A L S E$

Semantics of quantifiers: assignment functions

- to this end, we add an assignment function g ("Belegungsfunktion") to the model, the purpose of which is to assign a particular value to each variable
(5) $\mathcal{M}=\langle D, I\rangle$, where:
a. $\quad D=\{$ Mary, Jane, MMil $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| m | Mary | S | $\{$ Mary, Jane $\}$ |
| j | Jane | B | $\{$ MMil $\}$ |
| mmil | MMil | R | $\{\langle$ Mary, MMil $\rangle\}$ |

c. $g(x)=$ Jane, $g(y)=$ Mary
(6) Modified assignment:

A modified assignment function $g^{\prime}=g^{d / v}$ is a function that behaves exactly like g except that it assigns the individual $d \in D$ to the variable v.

Semantics of quantifiers: assignment functions

Semantics of predicate logic (part I):
(7) a. If α is a non-logical constant, then $\llbracket \alpha \rrbracket^{M, g}=I(\alpha)$
b. If α is a variable, then $\llbracket \alpha \rrbracket^{M, g}=g(\alpha)$
(8) If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\llbracket \delta\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g}=1$ iff $\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{M}, g}\right\rangle \in \llbracket \delta \rrbracket^{\mathcal{M}, g}$.
(9) For any formula ϕ, ψ :
a. $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}, g}=1 \mathrm{iff} \llbracket \phi \rrbracket^{\mathcal{M}, g}=0$.
b. $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}, g}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}, g}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}, g}=1$.
c. $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}, g}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}, g}, \llbracket \psi \rrbracket^{\mathcal{M}, g}=1$.
d. $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}, g}=1$ iff either $\llbracket \phi \rrbracket^{M, g}=0$ or $\llbracket \psi \rrbracket^{M, g}=1$.
e. $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{M, g}=1$ iff $\llbracket \phi \rrbracket^{M, g}=\llbracket \psi \rrbracket^{M, g}$.

Semantics of quantifiers: assignment functions

Semantics of predicate logic (part II):
(10) a. If ϕ is a formula, and x is a variable, then $\llbracket(\exists x) \phi \rrbracket^{\mathcal{M}, g}=1$ iff there is at least one $d \in D$ such that $\llbracket \phi \rrbracket^{\mathcal{M}, g^{d / x}}=1$
b. If ϕ is a formula, and x is a variable, then $\llbracket(\forall x) \phi \rrbracket^{\mathcal{M}, g}=1$ iff for all $d \in D, \llbracket \phi \rrbracket^{M, g^{d / x}}=1$
(11) For any formula $\phi, \llbracket \phi \rrbracket^{\mathcal{M}}=1$ iff for all assignments $g, \llbracket \phi \rrbracket^{M, g}=1$.

Semantics of quantifiers: assignment functions

- Illustration: the calculation of $\llbracket(12-b) \rrbracket^{M, g}$
(12) a. Mary is reading a book.
b. $\quad(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))$
(13) $\mathcal{M}=\langle D, I\rangle$, where:
a. $\quad D=\{$ Mary, Jane, MMil $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| m | Mary | student | $\{$ Mary, Jane $\}$ |
| j | Jane | book | $\{$ MMil $\}$ |
| mmil | MMil | read | $\{\langle$ Mary, MMil $\rangle\}$ |

c. $g(x)=$ Jane, $g(y)=$ Mary

Semantics of quantifiers: assignment functions

(14) $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g}$
(15) \quad a. \llbracket book $\rrbracket^{\mathcal{M}, g}=I($ book $)=\{$ MMil $\}$, and $\llbracket x \rrbracket^{M, g}=g(x)=$ Jane (rules (7-a) and (7-b))
b. $\llbracket \operatorname{book}(x) \rrbracket^{M, g}=0$ because Jane $\notin \llbracket b o o k \rrbracket^{M, g}$ (rule 8)
c. \llbracket read $\rrbracket^{M, g}=I($ read $)=\{\langle$ Mary, MMil $\rangle\}$, and $\llbracket m \rrbracket^{M, g}=I(m)=$ Mary ($2 \times$ rule ($7-\mathrm{a}$))
d. $\llbracket \operatorname{read}(m, x) \rrbracket^{M, g}=0$, because \langle Mary, Jane $\rangle \notin \llbracket r e a d \rrbracket^{M, g}$ (rule 8)
e. $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g}=0$
(rule (9-b), applied to (15-b) and (15-d))

Semantics of quantifiers: assignment functions

- to compute $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g}$, we must check whether there is a modified assignment $g^{\prime}=g^{d / x}$ such that $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g^{d / x}}=1$ for some $d \in D$ (rule (10-a))
- there is such an assignment: $g^{\prime}(x)=$ MMil:

$$
\begin{align*}
\text { a. } & \llbracket(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g^{\prime}}=1 \text { because } g^{\prime}(x)=\text { MMil, and } \tag{16}\\
& \text { MMil } \in \llbracket \text { book } \rrbracket^{M, g^{\prime}}, \text { and }\langle\text { Mary }, \text { MMil }\rangle \in \llbracket r e a d \rrbracket^{M, g^{\prime}}
\end{align*}
$$

b. $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g}=1$

- at this point, one may note that the computation would not have been different if we had started with an assignment function different from g in the first place
- in other words: the truth value of $(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))$ is independent from the assignment function it is evaluated against: the only variable it contains is bound
- therefore (rule (11)):
(17) $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M}=1$

Semantics of quantifiers: assignment functions

- Illustration: the calculation of $\llbracket(18-\mathrm{b}) \rrbracket^{M, g}$
(18) a. Every student is reading a book.
b. $\quad(\forall y)(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(y, x)))$
(19) $M=\langle D, I\rangle$, where:
a. $\quad D=\{$ Mary, Jane, MMil $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| m | Mary | student | \{Mary, Jane $\}$ |
| j | Jane | book | $\{$ MMil $\}$ |
| mmil | MMil | read | $\{\langle$ Mary, MMil $\rangle\}$ |

c. $g(x)=$ Jane, $g(y)=$ Mary

Semantics of quantifiers: assignment functions

(20) $\llbracket(\forall y)(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(y, x))) \rrbracket^{M, g}$
(21) a. \llbracket book $k \rrbracket^{\mathcal{M}, g}=I($ book $)=\{$ MMil $\}$, and $\llbracket x \rrbracket^{M, g}=g(x)=$ Jane (rules (7-a) and (7-b))
b. $\llbracket \operatorname{book}(x) \rrbracket^{M, g}=0$ because Jane $\notin \llbracket b o o k \rrbracket^{M, g}$ (rule 8)
c. $\quad \llbracket \mathrm{read} \rrbracket^{M, g}=I($ read $)=\{\langle$ Mary, MMil $\rangle\}$, and $\llbracket y \rrbracket^{M, g}=g(y)=$ Mary (rules (7-a) and (7-b))
d. $\llbracket \operatorname{read}(y, x) \rrbracket^{\mathcal{M}, g}=0$, because \langle Mary, Jane $\rangle \notin \llbracket$ read $\rrbracket^{\mathcal{M}, g}$ (rule 8)
e. $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(y, x)) \rrbracket^{M, g}=0$
(rule (9-b), applied to (21-b) and (21-d))

Semantics of quantifiers: assignment functions

- to compute $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{\mathcal{M}, g}$, we must check whether there is a modified assignment $g^{\prime}=g^{d / x}$ such that $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g^{d / x}}=1$ for some $d \in D$ (rule (10-a))
- again, there is such an assignment: $g^{\prime}(x)=$ MMil:
(22) a. $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{M, g^{\prime}}=1$ because $g^{\prime}(x)=$ MMil, and MMil $\in \llbracket$ book $\rrbracket^{\text {M, } g^{\prime}}$, and \langle Mary, MMil $\rangle \in \llbracket r e a d \rrbracket^{M, g^{\prime}}$
b. $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x)) \rrbracket^{\mathcal{M}, g}=1$
- we continue:
(23) a. $\quad \llbracket$ studen $\rrbracket^{M, g}=I($ student $)=\{$ Mary, Jane $\}$, and $\llbracket y \rrbracket^{M, g}=g(y)=$ Mary (rules (7-a) and (7-b))
b. \llbracket student $(y) \rrbracket^{\mathcal{M}, g}=1$ because Mary $\in \llbracket$ student $\rrbracket^{M, g}$ (rule (8))
c. $\llbracket(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(y, x))) \rrbracket^{M, g}=1$
(rule (9-d), applied to (22-b) and (23-b))

Semantics of quantifiers: assignment functions

- $\llbracket(\forall y)(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))) \rrbracket^{\mathcal{M}, g}$: we check whether there is a $g^{\prime}=g^{d / y}$ such that $\llbracket(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))) \rrbracket^{\mathcal{M}, g^{d / y}}=1$ for all $d \in D$ (rule (10-b))
- let us try the assignment $g^{\prime \prime}=g^{\text {/jane } / y}=g^{\text {MMil } / x^{\text {ane } / y}}$
- that is, let us see whether by further modifying our previous g^{\prime}, we can get $\llbracket(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))) \rrbracket^{\mathcal{M}, g^{\prime \prime}}=1$, assuming that $g^{\prime \prime}(y)=$ Jane:
(24) a. \llbracket student $(y) \rrbracket^{M, g^{\prime \prime}}=1$ because $g^{\prime \prime}(y)=$ Jane, and Jane $\in \llbracket$ student $(y) \rrbracket^{\mathcal{M}, g^{\prime \prime}}$ (rules (7-b) and (8))
b. $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(y, x)) \rrbracket^{\mathcal{M}, g^{\prime \prime}}=0$ because $g^{\prime \prime}(x)=$ MMil, MMil $\in \llbracket$ book $\rrbracket^{M, g^{\prime \prime}}$, and \langle Jane, MMil $\rangle \notin \llbracket$ read $\rrbracket^{M, g^{\prime \prime}}$ (rules (7-b) and $2 \times(8)$)
c. $\llbracket(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(y, x))) \rrbracket^{M, g^{\prime \prime}}=0$ because there is no other function $g^{\prime \prime \prime}=g^{\prime \prime d / x}$ for some $d \in D$ such that $\llbracket(\operatorname{book}(x) \wedge \operatorname{read}(y, x)) \rrbracket^{M, g^{\prime \prime \prime}}=1$
d. $\llbracket(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))) \rrbracket^{M, g^{\prime \prime}}=0$ because of rule (9-d) applied to (24-a) and (24-c)
e. $\llbracket(\forall y)(\operatorname{student}(y) \rightarrow(\exists x)(\operatorname{book}(x) \wedge \operatorname{read}(m, x))) \rrbracket^{M, g}=0$ (rule (10-b) and (24-d))

