Formale Grundlagen (Logik) Modul 04-006-1001

Predicate Logic IV

Leipzig University

February 1st, 2024

Fabian Heck (Slides based on Partee, ter Meulen und Wall 1990 "Mathematical Methods in Linguistics")

Recap: Vocabulary of predicate logic

- 1 individual constants: $\{ dan, norbert, m, j, \dots \} \rightarrow terms$
- 2 individual variables: $\{x, y, z, \dots\} \rightarrow terms$
- **3** predicate constants: $\{C, D, L, ...\}$
- 4 connectives: $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- 5 auxiliary symbols: (,), [,]
- 6 quantifiers: \forall universal, \exists existential

Recap: Syntax of predicate logic

(1) Syntax of predicate logic

- a. If δ is an *n*-place predicate and t_1, \ldots, t_n are terms, then $\delta(t_1, \ldots, t_n)$ is a well-formed formula.
- b. If ϕ is a formula, then $(\neg \phi)$ is a well-formed formula.
- c. If ϕ and ψ are formulas, then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, and $(\phi \leftrightarrow \psi)$ are well-formed formulas.
- d. If ϕ is a formula and x is an individual variable, then $(\forall x)\phi$ and $(\exists x)\phi$ are well-formed formulas.
- e. Nothing else is a formula.

Recap: Semantics of predicate logic

- (2) Semantics of predicate logic
 - a. If δ is an *n*-place predicate and t_1, \ldots, t_n are terms, then $[\![\delta(t_1, \ldots, t_n)]\!]^M = 1$ iff $\langle [\![t_1]\!]^M, \ldots, [\![t_n]\!]^M \rangle \in [\![\delta]\!]^M$.
 - b. If ϕ is a formula, then $[(\neg \phi)]^M = 1$ iff $[\phi]^M = 0$.
 - c. If ϕ and ψ are formulas, then $[(\phi \land \psi)]^M = 1$ iff both $[\phi]^M = 1$ and $[\psi]^M = 1$.
 - d. If ϕ and ψ are formulas, then $[(\phi \lor \psi)]^M = 1$ iff at least one of $[\![\phi]\!]^M, [\![\psi]\!]^M = 1$.
 - e. If ϕ and ψ are formulas, then $[\![(\phi \to \psi)]\!]^M = 1$ iff either $[\![\phi]\!]^M = 0$ or $[\![\psi]\!]^M = 1$.
 - $$\begin{split} \text{f.} & \text{If } \phi \text{ and } \psi \text{ are formulas, then } \llbracket (\phi \leftrightarrow \psi) \rrbracket^M = 1 \text{ iff} \\ \llbracket \phi \rrbracket^M = \llbracket \psi \rrbracket^M. \end{split}$$

Recap: Semantics of predicate logic with quantifiers

- the trick: let the open statement in the scope of the quantifier assume a truth-value temporarily
- specifically, we let the variable take on the values of all the individuals in the domain *D* one by one and see what truth value the statement would have for each of these individuals
 - (3) a. $[\![(\forall x)H(x)]\!]^M = \text{TRUE iff } [\![x]\!]^M \in [\![H]\!]^M$ for all individuals in *D*; if for even one element in *D*, $[\![x]\!]^M \notin [\![H]\!]^M$, then $[\![(\forall x)H(x)]\!]^M = FALSE$
 - b. $[\![(\exists x)H(x)]\!]^M = \text{TRUE iff } [\![x]\!]^M \in [\![H]\!]^M$ for at least one individual in *D*; if for no element in *D*, $[\![x]\!]^M \in [\![H]\!]^M$, then $[\![(\exists x)H(x)]\!]^M = FALSE$

- the rules in (4-a,b) both make reference to [[x]]^M, i.e. the denotation of a variable
- strictly speaking, such a denotation is not available in our models so far
- what the wordings "for all individuals in *D*"/"for at least one individual in *D*", respectively, suggest, is that we need a means to have a variable assume one or more particular values
 - (4) a. $[\![(\forall x)H(x)]\!]^M = \text{TRUE iff } [\![x]\!]^M \in [\![H]\!]^M$ for all individuals in *D*; if for even one element in *D*, $[\![x]\!]^M \notin [\![H]\!]^M$, then $[\![(\forall x)H(x)]\!]^M = FALSE$
 - b. $[\![(\exists x)H(x)]\!]^M = \text{TRUE iff } [\![x]\!]^M \in [\![H]\!]^M$ for at least one individual in *D*; if for no element in *D*, $[\![x]\!]^M \in [\![H]\!]^M$, then $[\![(\exists x)H(x)]\!]^M = FALSE$

- to this end, we add an assignment function g ("Belegungsfunktion") to the model, the purpose of which is to assign a particular value to each variable
- (5) $M = \langle D, I \rangle$, where:
 - a. $D = \{Mary, Jane, MMil\}$

b.	<i>I</i> =	term	value	predicate	value
		т	Mary	S	{Mary, Jane}
		j	Jane	В	{MMil}
		mmil	MMil	R	$\{\langle Mary, MMil \rangle\}$

c.
$$g(x) = Jane, g(y) = Mary$$

(6) *Modified assignment*:

A modified assignment function $g' = g^{d/v}$ is a function that behaves exactly like g except that it assigns the individual $d \in D$ to the variable v.

Semantics of predicate logic (part I):

- (7) a. If α is a non-logical constant, then $[\![\alpha]\!]^{M,g} = I(\alpha)$
 - b. If α is a variable, then $\llbracket \alpha \rrbracket^{M,g} = g(\alpha)$
- (8) If δ is an *n*-place predicate and t_1, \ldots, t_n are terms, then $[\![\delta(t_1, \ldots, t_n)]\!]^{M,g} = 1$ iff $\langle [\![t_1]\!]^{M,g}, \ldots, [\![t_n]\!]^{M,g} \rangle \in [\![\delta]\!]^{M,g}$.
- (9) For any formula ϕ, ψ :

a.
$$\llbracket (\neg \phi) \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0.$$

b.
$$\llbracket (\phi \land \psi) \rrbracket^{M,g} = 1 \text{ iff both } \llbracket \phi \rrbracket^{M,g} = 1 \text{ and } \llbracket \psi \rrbracket^{M,g} = 1.$$

c.
$$\llbracket (\phi \lor \psi) \rrbracket^{M,g} = 1 \text{ iff at least one of } \llbracket \phi \rrbracket^{M,g}, \llbracket \psi \rrbracket^{M,g} = 1.$$

d.
$$\llbracket (\phi \to \psi) \rrbracket^{M,g} = 1 \text{ iff either } \llbracket \phi \rrbracket^{M,g} = 0 \text{ or } \llbracket \psi \rrbracket^{M,g} = 1.$$

e.
$$\llbracket (\phi \leftrightarrow \psi) \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}.$$

Semantics of predicate logic (part II):

- (10) a. If ϕ is a formula, and x is a variable, then $[\![(\exists x)\phi]\!]^{M,g} = 1$ iff there is at least one $d \in D$ such that $[\![\phi]\!]^{M,g^{d/x}} = 1$
 - b. If ϕ is a formula, and x is a variable, then $[\![(\forall x)\phi]\!]^{M,g} = 1$ iff for all $d \in D$, $[\![\phi]\!]^{M,g^{d/x}} = 1$
- (11) For any formula ϕ , $\llbracket \phi \rrbracket^M = 1$ iff for all assignments g, $\llbracket \phi \rrbracket^{M,g} = 1$.

- Illustration: the calculation of $[(12-b)]^{M,g}$
- (12) a. Mary is reading a book.

b.
$$(\exists x)(book(x) \land read(m, x))$$

(13) $M = \langle D, I \rangle$, where:

a. $D = \{Mary, Jane, MMil\}$

b.	<i>I</i> =	term	value	predicate	value
		т	Mary	student	{Mary, Jane}
		j	Jane	book	{MMil}
		mmil	MMil	read	$\{\langle Mary, MMil \rangle\}$

c.
$$g(x) = Jane, g(y) = Mary$$

(14) $\llbracket (\exists x)(book(x) \land read(m, x)) \rrbracket^{M,g}$

- (15) a. $[book]^{M,g} = I(book) = \{MMil\}, \text{ and } [x]^{M,g} = g(x) = Jane (rules (7-a) and (7-b))$
 - b. $\llbracket book(x) \rrbracket^{M,g} = 0$ because $Jane \notin \llbracket book \rrbracket^{M,g}$ (rule 8)
 - c. $\llbracket read \rrbracket^{M,g} = I(read) = \{ \langle Mary, MMil \rangle \}$, and $\llbracket m \rrbracket^{M,g} = I(m) = Mary (2 \times rule (7-a))$
 - d. $[[read(m, x)]]^{M,g} = 0$, because $\langle Mary, Jane \rangle \notin [[read]]^{M,g}$ (rule 8)

e.
$$\llbracket (book(x) \land read(m, x)) \rrbracket^{M,g} = 0$$

(rule (9-b), applied to (15-b) and (15-d))

- to compute [[(∃x)(book(x) ∧ read(m, x))]]^{M,g}, we must check whether there is a modified assignment g' = g^{d/x} such that [[(book(x) ∧ read(m, x))]]^{M,g^{d/x}} = 1 for some d ∈ D (rule (10-a))
- there is such an assignment: g'(x) = MMil:
- (16) a. $\llbracket (book(x) \land read(m, x)) \rrbracket^{M,g'} = 1$ because g'(x) = MMil, and $MMil \in \llbracket book \rrbracket^{M,g'}$, and $\langle Mary, MMil \rangle \in \llbracket read \rrbracket^{M,g'}$

b.
$$\llbracket (\exists x)(book(x) \land read(m, x)) \rrbracket^{M,g} = 1$$

- at this point, one may note that the computation would not have been different if we had started with an assignment function different from g in the first place
- in other words: the truth value of (∃x)(book(x) ∧ read(m, x)) is independent from the assignment function it is evaluated against: the only variable it contains is bound
- therefore (rule (11)):

(17)
$$\llbracket (\exists x)(book(x) \land read(m, x)) \rrbracket^M = 1$$

• Illustration: the calculation of [[(18-b)]]^{*M*,g}

(18) a. Every student is reading a book.

b. $(\forall y)(student(y) \rightarrow (\exists x)(book(x) \land read(y, x)))$

(19) $M = \langle D, I \rangle$, where:

b. $I = \begin{bmatrix} term & value & predicate & value \\ m & Mary & student & \{Mary, Jane\} \\ j & Jane & book & \{MMil\} \\ mmil & MMil & read & \{\langle Mary, MMil \rangle\} \\ \end{bmatrix}$

c. g(x) = Jane, g(y) = Mary

a. $D = \{Mary, Jane, MMil\}$

(20)
$$\llbracket (\forall y)(student(y) \rightarrow (\exists x)(book(x) \land read(y, x))) \rrbracket^{M,g}$$

(21) a.
$$[book]^{M,g} = I(book) = \{MMil\}, \text{ and } [x]^{M,g} = g(x) = Jane (rules (7-a) and (7-b))$$

- b. $\llbracket book(x) \rrbracket^{M,g} = 0$ because $Jane \notin \llbracket book \rrbracket^{M,g}$ (rule 8)
- c. $\llbracket read \rrbracket^{M,g} = I(read) = \{ \langle Mary, MMil \rangle \}$, and $\llbracket y \rrbracket^{M,g} = g(y) = Mary$ (rules (7-a) and (7-b))
- d. $\llbracket read(y, x) \rrbracket^{M,g} = 0$, because $\langle Mary, Jane \rangle \notin \llbracket read \rrbracket^{M,g}$ (rule 8)

e.
$$\llbracket (book(x) \wedge read(y, x)) \rrbracket^{M,g} = 0$$

(rule (9-b), applied to (21-b) and (21-d))

- to compute [[(∃x)(book(x) ∧ read(m, x))]]^{M,g}, we must check whether there is a modified assignment g' = g^{d/x} such that [[(book(x) ∧ read(m, x))]]^{M,g^{d/x}} = 1 for some d ∈ D (rule (10-a))
- again, there is such an assignment: g'(x) = MMil:

(22) a.
$$\llbracket (book(x) \land read(m, x)) \rrbracket^{M,g'} = 1$$
 because $g'(x) = MMil$, and $MMil \in \llbracket book \rrbracket^{M,g'}$, and $\langle Mary, MMil \rangle \in \llbracket read \rrbracket^{M,g'}$

b.
$$[(\exists x)(book(x) \land read(m, x))]^{M,g} = 1$$

we continue:

- (23) a. $[student]^{M,g} = l(student) = \{Mary, Jane\}, and <math>[y]^{M,g} = g(y) = Mary$ (rules (7-a) and (7-b))
 - b. [[student(y)]]^{M,g} = 1 because Mary ∈ [[student]]^{M,g} (rule (8))
 - c. $[(student(y) \rightarrow (\exists x)(book(x) \land read(y, x)))]^{M,g} = 1$ (rule (9-d), applied to (22-b) and (23-b))

- $[(\forall y)(student(y) \to (\exists x)(book(x) \land read(m, x)))]^{M,g}$: we check whether there is a $g' = g^{d/y}$ such that $[(student(y) \to (\exists x)(book(x) \land read(m, x)))]^{M,g^{d/y}} = 1$ for all $d \in D$ (rule (10-b))
- let us try the assignment $g'' = g'^{Jane/y} = g^{MMil/x^{Jane/y}}$
- that is, let us see whether by further modifying our previous g', we can get
 [(student(y) → (∃x)(book(x) ∧ read(m, x)))]^{M,g''} = 1, assuming that
 g''(y) = Jane:
- (24) a. $[[student(y)]]^{M,g''} = 1$ because g''(y) = Jane, and $Jane \in [[student(y)]]^{M,g''}$ (rules (7-b) and (8))
 - b. $[[(book(x) \land read(y, x))]]^{M,g''} = 0$ because g''(x) = MMil, $MMil \in [[book]]^{M,g''}$, and $\langle Jane, MMil \rangle \notin [[read]]^{M,g''}$ (rules (7-b) and 2× (8))
 - c. $[[(\exists x)(book(x) \land read(y, x)))]^{M,g''} = 0$ because there is no <u>other</u> function $g''' = g''^{d/x}$ for some $d \in D$ such that $[(book(x) \land read(y, x))]^{M,g''} = 1$
 - d. $[(student(y) \rightarrow (\exists x)(book(x) \land read(m, x)))]^{M,g''} = 0$ because of rule (9-d) applied to (24-a) and (24-c)
 - e. $[(\forall y)(student(y) \rightarrow (\exists x)(book(x) \land read(m, x)))]^{M,g} = 0$ (rule (10-b) and (24-d))