Formale Grundlagen (Logik) Modul 04-006-1001

Predicate Logic III
Leipzig University
January $25^{\text {th }}, 2024$

Fabian Heck
(Slides by Imke Driemel \& Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990
"Mathematical Methods in Linguistics")

Recap: Vocabulary of predicate logic

- predicate logic has the following components:
(1) individual constants: $\{$ dan, norbert, $m, j, \ldots\} \rightarrow$ terms
(2) individual variables: $\{x, y, z, \ldots\} \rightarrow$ terms

3 predicate constants: $\{C, D, L, \ldots\}$
(4) connectives: $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$

5 auxiliary symbols: (,), [,]
(6) quantifiers: \forall universal, \exists existential

- these various pieces are combined to make up expressions (atomic or complex) and (open) statements

Recap: Syntax of predicate logic

- the first rule creates atomic formulas (formulas without connectives or quantifiers)
- the second and third rules create complex (open) statements
(1) Syntax of predicate logic
a. If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\delta\left(t_{1}, \ldots, t_{n}\right)$ is a well-formed formula.
b. If ϕ is a formula, then $(\neg \phi)$ is a well-formed formula.
c. If ϕ and ψ are formulas, then $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and ($\phi \leftrightarrow \psi$) are well-formed formulas.
d. If ϕ is a formula and x is an individual variable, then $(\forall x) \phi$ and $(\exists x) \phi$ are well-formed formulas.
e. Nothing else is a formula.

Recap: Semantics of predicate logic

- as with statement logic, a statement in predicate logic can have one of two binary values: True or False (relative to a model M)
- except for the first rule, the semantic rules are identical to those of statement logic
(2) Semantics of predicate logic
a. If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\llbracket \delta\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{M}}=1 \mathrm{iff}$ $\left\langle\llbracket t_{1} \rrbracket^{\mathcal{M}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{M}}\right\rangle \in \llbracket \delta \rrbracket^{M}$.
b. If ϕ is a formula, then $\llbracket(\neg \phi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=0$.
c. If ϕ and ψ are formulas, then $\llbracket(\phi \wedge \psi) \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket(\phi \vee \psi) \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket(\phi \rightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff either $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
f. If ϕ and ψ are formulas, then $\llbracket(\phi \leftrightarrow \psi) \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.
- there are certain statements whose truth value is fixed, regardless of the model
(3) a. $P(s) \vee \neg P(s)$ is always True (logical tautology)
b. $\quad P(s) \wedge \neg P(s)$ is always False (logical contradiction)

Recap: Semantics of predicate logic

A model \mathcal{M} is a pair $\langle D, I\rangle$, where D is the domain, a set of individuals, and I is an interpretation function: an assignment of semantic values to every basic expression in the language
(4) $M=\langle D, I\rangle$, where:
a. $\quad D=\{$ Dee, Nat, Jean, Mo $\}$
b. I determines the following mapping between terms and predicate terms on the one hand, and objects in $D /$ sets of (tuples of) objects on the other hand:

term	value	predicate	value
d	Dee	H	$\{$ Nat, Mo $\}$
n	Nat	C	$\{$ Nat, Mo, Dee $\}$
j	Jean	R	$\{\langle$ Mo, Dee \rangle,\langle Nat, Dee $\rangle\}$
m	Mo	L	$\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean $\rangle\}$

(5) A model M consist of a set D and a function I which assigns:
a. to each individual constant, a member of D
b. to each one-place predicate, a subset of D
c. to each two-place predicate, a subset of $D \times D$
d. to each n-place predicate, a subset of $D_{1} \times D_{2} \times \cdots \times D_{n}$

Recap: Semantics of predicate logic

(6) Semantic rules of predicate logic
a. If δ is an n-place predicate and t_{1}, \ldots, t_{n} are terms, then $\llbracket \delta\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M}=1$ iff $\left\langle\llbracket t_{1} \rrbracket^{M}, \ldots, \llbracket t_{n} \rrbracket^{M}\right\rangle \in \llbracket \delta \rrbracket^{M}$.
b. If ϕ is a formula, then $\llbracket \neg \phi \rrbracket^{M}=1$ iff $\llbracket \phi \rrbracket^{M}=0$.
c. If ϕ and ψ are formulas, then $\llbracket \phi \wedge \psi \rrbracket^{\mathcal{M}}=1$ iff both $\llbracket \phi \rrbracket^{\mathcal{M}}=1$ and $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
d. If ϕ and ψ are formulas, then $\llbracket \phi \vee \psi \rrbracket^{\mathcal{M}}=1$ iff at least one of $\llbracket \phi \rrbracket^{\mathcal{M}}, \llbracket \psi \rrbracket^{\mathcal{M}}=1$.
e. If ϕ and ψ are formulas, then $\llbracket \phi \rightarrow \psi \rrbracket^{\mathcal{M}}=1$ iff either $\llbracket \phi \rrbracket^{\mathcal{M}}=0$ or $\llbracket \psi \rrbracket^{\mathcal{M}}=1$.
f. If ϕ and ψ are formulas, then $\llbracket \phi \leftrightarrow \psi \rrbracket^{\mathcal{M}}=1$ iff $\llbracket \phi \rrbracket^{\mathcal{M}}=\llbracket \psi \rrbracket^{\mathcal{M}}$.

With respect to Model M, the truth values of the (well-formed) formulas below are as follows:
a. $\llbracket C(j) \rrbracket^{M}$
b. $\llbracket R(n, d) \rrbracket^{\mathcal{M}}$
false
true
not well-formed
c. $\llbracket C(j \wedge d) \rrbracket^{M}$
not well-formed
d. $\llbracket L(n, j) \vee C(j) \rrbracket^{M}$ true

term	value	pred	value
d	Dee	H	$\{$ Nat, Mo $\}$
n	Nat	C	$\{$ Nat, Mo, Dee $\}$
j	Jean	R	$\{\langle$ Mo, Dee \rangle,\langle Nat, Dee $\rangle\}$
m	Mo	L	$\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean $\rangle\}$

e. $\llbracket(C(d) \wedge L(n, j)) \rightarrow H(n) \rrbracket^{\mathcal{M}}$
true
Table: Model M

Quantifier scope and quantifier binding

- we will now introduce some terminology, recall the syntax of quantifiers:
(8) Syntax of predicate logic
d. If ϕ is a formula and x is an individual variable, then $(\forall x) \phi$ and $(\exists x) \phi$ are well-formed formulas.
- ϕ is called the scope of the quantifier (we can also say: ϕ lies in the scope of the quantifier)
- if there are no brackets, then the minimal formula immediately following the quantifier lies in its scope, brackets may be used to extend the scope of a quantifier
(9) a. $\quad((\exists x) R(x, y) \wedge P(x))$

$$
\text { scope of }(\exists x)
$$

b. $\quad(\exists x)(R(x, y) \wedge P(x))$

$$
\text { scope of }(\exists x)
$$

Quantifier scope and quantifier binding

- the scope of one quantifier may be contained in the scope of another quantifier

$$
\begin{array}{r}
(\exists x)(\forall y)(R(x, y) \wedge P(x, x)) \tag{10}\\
\text { scope of }(\exists x) \\
\text { scope of }(\forall y)
\end{array}
$$

- determine the scope for each of the quantifiers in the following example!

$$
\begin{equation*}
(\exists x)[Q(x) \wedge(\forall y)(P(y) \rightarrow(\exists z) S(x, y, z))] \tag{11}
\end{equation*}
$$

Quantifier scope and quantifier binding

- the scope of one quantifier may be contained in the scope of another quantifier

$$
\begin{array}{r}
(\exists x)(\forall y)(R(x, y) \wedge P(x, x)) \tag{10}\\
\text { scope of }(\exists x) \\
\text { scope of }(\forall y)
\end{array}
$$

- determine the scope for each of the quantifiers in the following example!

$$
\begin{array}{r}
(\exists x)[Q(x) \wedge(\forall y)(P(y) \rightarrow(\exists z) S(x, y, z))] \tag{11}\\
\text { scope of }(\exists x) \\
\text { scope of }(\forall y) \\
\text { scope of }(\exists z)
\end{array}
$$

Quantifier scope and quantifier binding

(12) Quantifier binding:

An occurrence of a variable x is bound iff it occurs in the minimal scope of $(\exists x)$ or $(\forall x)$ (i.e., there is no closer binder available). A variable is free iff it is not bound.

- the existential quantifier $\exists x$ in (13-a) binds both instances of x
- a quantifier may also fail to bind any variable, for instance if there is no appropriate variable at all in its scope (13-b) (vacuous quantification)

```
a. \(\quad(\exists x)(R(x, y) \wedge P(x))\)
scope of \((\exists x)\)
b. \(\quad(\exists x)(R(m, j) \wedge P(k))\)
scope of \((\exists x)\)
```


Quantifier scope and quantifier binding

- all open statements contain at least one free variable
- a statement is a formula that does not contain a free variable
- important: a variable is always bound by the closest quantifier indexed for it
- in the example below, the variable x in the open statement $\mathcal{M}(x)$ is only bound by the existential quantifier $(\exists x)$ (although $\mathcal{M}(x)$ is in the scope of both $(\exists x)$ and $(\forall x)$) since $(\exists x)$ is closer to $M(x)$ than $(\forall x)$

$$
\begin{array}{r}
(\forall x)(R(x) \rightarrow(\exists x) M(x)) \tag{14}\\
\text { scope of }(\exists x) \\
\text { scope of }(\forall x)
\end{array}
$$

- a perhaps less confusing (but logically equivalent) way of writing up the formula would be this:

$$
\begin{array}{r}
(\forall x)(R(x) \rightarrow(\exists y) M(y)) \tag{15}\\
\text { scope of }(\exists y) \\
\text { scope of }(\forall x)
\end{array}
$$

Semantics of predicate logic with quantifiers

- figuring out the truth-values of statements that contain quantifiers and variables is a little more complicated; the trick is to let the open statement in the scope of the quantifier assume a truth-value temporarily
- specifically, we let the variable take on the values of all the individuals in the domain D one by one and see what truth value the statement would have for each of these individuals
a. $\llbracket(\forall x) H(x) \rrbracket^{\mathcal{M}}=$ TRUE iff $\llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$ for all individuals in D; if for even one element in $D, \llbracket x \rrbracket^{\mathcal{M}} \notin \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\forall x) H(x) \rrbracket^{\mathcal{M}}=F A L S E$
b. $\llbracket(\exists x) H(x) \rrbracket^{\mathcal{M}}=$ TRUE iff $\llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$ for at least one individual in D; if for no element in $D, \llbracket x \rrbracket^{\mathcal{M}} \in \llbracket H \rrbracket^{\mathcal{M}}$, then $\llbracket(\exists x) H(x) \rrbracket^{\mathcal{M}}=F A L S E$

Exercise: semantics of predicate logic with quantifiers

(17) $M=\langle D, I\rangle$, where:
a. $\quad D=\{$ Dee, Nat, Jean, Mo $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| d | Dee | H | $\{$ Nat, Mo $\}$ |
| n | Nat | C | $\{$ Nat, Mo, Dee $\}$ |
| j | Jean | R | $\{\langle$ Mo, Dee \rangle,\langle Nat, Dee $\rangle\}$ |
| m | Mo | L | $\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean $\rangle\}$ |

a. $\llbracket(\exists x) H(x) \rrbracket^{M}=$
b. $\llbracket(\exists x) L(x, j) \rrbracket^{\mathcal{M}}=$
c. $\llbracket(\forall x) L(x, j) \rrbracket^{\mathcal{M}}=$
d. $\llbracket(\exists y) L(d, y) \rrbracket^{M}=$
e. $\llbracket((\exists y) L(d, y) \wedge H(d)) \rrbracket^{\mathcal{M}}=$
(19) a. $\llbracket((\exists y) H(m) \wedge L(d, y)) \rrbracket^{M}=$
b. $\llbracket(\exists y)(H(d) \wedge L(d, y)) \rrbracket^{\mathcal{M}}=$
c. $\llbracket(\forall x)(C(x) \rightarrow L(x, j)) \rrbracket^{\mathcal{M}}=$
d. $\llbracket(\exists y)(H(z) \wedge C(z)) \rrbracket^{\mathcal{M}}=$
e. $\llbracket(\exists x) R(m, d) \rrbracket^{M}=$

Exercise: semantics of predicate logic with quantifiers

a. $\llbracket(\exists x) H(x) \rrbracket^{M}=\operatorname{TRUE}$
b. $\llbracket(\exists x) L(x, j) \rrbracket^{M}=T R U E$
c. $\llbracket(\forall x) L(x, j) \rrbracket^{M}=F A L S E$
d. $\llbracket(\exists y) L(d, y) \rrbracket^{\mathcal{M}}=T R U E$
e. $\llbracket((\exists y) L(d, y) \wedge H(d)) \rrbracket^{M}=F A L S E$
a. $\quad \llbracket((\exists y) H(m) \wedge L(d, y)) \rrbracket^{\mathcal{M}}=$?
b. $\llbracket(\exists y)(H(d) \wedge L(d, y)) \rrbracket^{M}=F A L S E$
c. $\llbracket(\forall x)(C(x) \rightarrow L(x, j)) \rrbracket^{M}=T R U E$
d. $\llbracket(\exists y)(H(z) \wedge C(z)) \rrbracket^{\mathcal{M}}=$?
e. $\llbracket(\exists x) R(m, d) \rrbracket^{M}=T R U E$

- the truth values of (19-a) and (19-d) cannot be determined because they contain open statements
- in (19-a), the expression $L(d, y)$ is not in the scope of $(\exists y)$ (only $H(m)$ is), and therefore the variable y cannot be bound
- in (19-d), the expression $(H(z) \wedge C(z))$ is in the scope of \exists, but this quantifier is indexed with another variable (namely y)

Semantics of predicate logic with quantifiers

- in expressions with more than one quantifiers, the order of quantifiers is important: we start with the outermost quantifier and then work our way inwards
(20) $M^{\prime}=\langle D, I\rangle$, where:
a. $\quad D=\{$ Dee, Nat, Jean, Mo $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| d | Dee | H | $\{$ Nat, Mo $\}$ |
| n | Nat | C | $\{$ Nat, Mo, Dee $\}$ |
| j | Jean | R | $\{\langle$ Mo, Dee \rangle,\langle Nat, Dee $\rangle\}$ |
| m | Mo | L | $\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean \rangle,\langle Jean, Nat $\rangle\}$ |

(21) $\llbracket(\forall x)(\exists y) L(x, y) \rrbracket^{\mathcal{M}^{\prime}}=T R U E$ (because everyone loves someone) the entire expression is TRUE iff for every possible value of x in $D, \llbracket(\exists y) L(x, y) \rrbracket^{\mathcal{M}^{\prime}}$ is TRUE; otherwise it is FALSE
$\llbracket(\exists y)(\forall x) L(x, y) \rrbracket^{M^{\prime}}=F A L S E$ (because Jean doesn't love himself) the entire expression is TRUE iff for at least one value of y in $D, \llbracket(\forall x) L(x, y) \rrbracket^{\mathcal{M}^{\prime}}$ is TRUE; otherwise it is FALSE

Exercise: semantics of predicate logic with quantifiers

(23) $M^{\prime \prime}=\langle D, I\rangle$, where:
a. $\quad D=\{$ Dee, Nat, Jean, Mo $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| d | Dee | H | $\{$ Nat, Mo $\}$ |
| n | Nat | C | $\{$ Nat, Mo, Dee $\}$ |
| j | Jean | R | $\{\langle$ Mo, Dee \rangle,\langle Nat, Dee \rangle,\langle Jean, Dee \rangle,\langle Dee, Dee $\rangle\}$ |
| m | Mo | L | $\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean $\rangle\}$ |

a. $\llbracket(\forall x)(\exists y) L(x, y) \rrbracket^{M^{\prime \prime}}=$
b. $\llbracket(\forall x)(\exists y) R(x, y) \rrbracket^{M^{\prime \prime}}=$
c. $\llbracket(\exists y)(\forall x) R(x, y) \rrbracket^{\mathcal{M}^{\prime \prime}}=$

Exercise: semantics of predicate logic with quantifiers

(23) $M^{\prime \prime}=\langle D, I\rangle$, where:
a. $\quad D=\{$ Dee, Nat, Jean, Mo $\}$

b. $\quad I=$| term | value | predicate | value |
| :--- | :--- | :--- | :--- |
| d | Dee | H | $\{$ Nat, Mo $\}$ |
| n | Nat | C | $\{$ Nat, Mo, Dee $\}$ |
| j | Jean | R | $\{\langle$ Mo, Dee \rangle,\langle Nat, Dee \rangle,\langle Jean, Dee \rangle,\langle Dee, Dee $\rangle\}$ |
| m | Mo | L | $\{\langle$ Nat, Jean \rangle,\langle Dee, Jean \rangle,\langle Mo, Jean $\rangle\}$ |

a. $\llbracket(\forall x)(\exists y) L(x, y) \rrbracket^{M^{\prime \prime}}=F A L S E$
b. $\llbracket(\forall x)(\exists y) R(x, y) \rrbracket^{M^{\prime \prime}}=T R U E$
c. $\llbracket(\exists y)(\forall x) R(x, y) \rrbracket^{\mathcal{M}^{\prime \prime}}=T R U E$

Proofs in predicate logic

- our rules of inference need some additions to handle quantifiers
- one proof is called Existential Generalization: If we know one true instantiation of a formula, we can generalize to an existential statement
(25) Maria is Anwältin.
$\therefore \quad$ Es gibt mindestens eine Anwältin.
(26)

$$
\begin{aligned}
& A(\text { maria }) \\
& \hline \therefore \quad(\exists x) A(x)
\end{aligned}
$$

(27)

$$
\begin{array}{ll}
& \varphi(c) \\
\hline \therefore \quad(\exists x) \varphi(x)
\end{array}
$$

Proofs in predicate logic

- our rules of inference need some additions to handle quantifiers
- another proof is called Universal Instantiation: If we know that every value for a variable in a formula is true, we can infer to some particular instantiation
(28) Alles ist vergänglich.
\therefore Hans ist vergänglich.
(29) $\frac{(\forall x) V(x)}{\therefore V(\text { hans })}$
(30)

$$
\begin{aligned}
&(\forall x) \varphi(x) \\
& \therefore \quad \varphi(c)
\end{aligned}
$$

Proofs in predicate logic

(31) Modus Ponens
$\begin{array}{ll} & (p \rightarrow q) \\ & p \\ \therefore \quad & q\end{array}$
(32) Modus Tollens

	$(p \rightarrow q)$
	$(\neg q)$
$\therefore \quad$	$(\neg p)$

(33) Hyp. Syll.

	$(p \rightarrow q)$
	$(q \rightarrow r)$
$\therefore \quad(p \rightarrow r)$	

(34) Dis. Syll.
$\begin{array}{ll} & (p \vee q) \\ & (\neg p) \\ \therefore \quad & q\end{array}$
(35) Simplification
$\quad(p \wedge q)$
$\therefore \quad p$
(36) Conjunction

p
q
$\quad(p \wedge q)$

(37) Addition
p
$\therefore \quad(p \vee q)$
(38) Exist. Gen.
$\varphi(c)$
$\therefore \quad(\exists x) \varphi(x)$
(39) Uni. Inst.
$\frac{(\forall x) \varphi(x)}{\therefore \quad \varphi(c)}$

Alle Menschen sind sterblich. Sokrates ist ein Mensch.
\therefore Sokrates ist sterblich.
(40) proof:

1. $(\forall x)(M(x) \rightarrow S(x))$
2. $M(s)$
3. $(M(s) \rightarrow S(s)) \quad 1 \mathrm{UI}$
4. $(S(s)) \quad 2,3 \mathrm{MP}$

Proofs in predicate logic

(41) Modus Ponens
$\begin{array}{ll} & (p \rightarrow q) \\ & p \\ \therefore \quad & q\end{array}$
(42) Modus Tollens
$\begin{aligned} & (p \rightarrow q) \\ & (\neg q) \\ \therefore \quad & (\neg p)\end{aligned}$
(43) Hyp. Syll.
$\begin{array}{ll} & (p \rightarrow q) \\ & (q \rightarrow r) \\ \therefore \quad & (p \rightarrow r)\end{array}$
(44) Dis. SyII.
$\begin{array}{ll} & (p \vee q) \\ & (\neg p) \\ \therefore \quad & q\end{array}$
(45) Simplification

$$
\begin{aligned}
&(p \wedge q) \\
& \therefore \quad p
\end{aligned}
$$

(46) Conjunction

p
$\quad q$
$\therefore \quad(p \wedge q)$

(47) Addition
$\quad p$
$\therefore \quad(p \vee q)$
(48) Exist. Gen.

$$
\begin{aligned}
& \varphi(c) \\
& \therefore \quad(\exists x) \varphi(x)
\end{aligned}
$$

(49) Uni. Inst.

$$
\begin{aligned}
&(\forall x) \varphi(x) \\
& \therefore \quad \varphi(c)
\end{aligned}
$$

Alle sind verwundbar.
$\therefore \quad$ Einer ist verwundbar.
(50) proof:

1. $(\forall x) V(x)$
2. $V(m)$
3. $(\exists x) V(x)$
