Modul 04-006-1001: Formale Grundlagen (Logik)

WiSe 2023-2024

Solutions 9

Excercise 1: Proofs

• A statement $P \Rightarrow Q$ claims that Q is a logical consequence of P. One can show that $P \Rightarrow Q$ is true by showing that $P \rightarrow Q$ is a tautology via drawing truth tables.

(1) a. $(p \lor p) \Rightarrow p$:

p	$(p \lor p)$	$((p \lor p) \to p)$
1	1	1
0	0	1

b. $((\neg p) \to (\neg q)) \Rightarrow (q \to p)$:

p	q	$(\neg p)$	$(\neg q)$	$((\neg p) \to (\neg q))$	$(q \to p)$	$(((\neg p) \to (\neg q)) \to (q \to p))$
1	1	0	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	1	1	1
0	0	1	0	0	1	1

c. $(p \lor ((\neg p) \land q)) \Rightarrow (p \lor q)$:

p	q	$(\neg p)$	$(p \lor q)$	$((\neg p) \land q)$	$(p \lor ((\neg p) \land q))$	$((p \lor ((\neg p) \land q)) \to (p \lor q))$
1	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
0	0	1	0	0	0	1

d. $(p \to (q \to r)) \Rightarrow ((p \to q) \to (p \to r))$:

p	q	r	$(p \to q)$	$(p \to r)$	$(q \to r)$	$(p \to (q \to r))$	$((p \to q) \to (p \to r))$	
1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
1	1	0	1	0	0	0	0	1
0	1	0	1	1	0	1	1	1
1	0	0	0	0	1	1	1	1
0	0	0	1	1	1	1	1	1

where ". . ." stands for $((p \to (q \to r)) \to ((p \to q) \to (p \to r)))$

e. $(p \lor q) \Rightarrow (q \lor p)$: (1)

	p	q	$(p \lor q)$	$(q \lor p)$	$((p \lor q) \to (q \lor p))$
	1	1	1	1	1
	0	1	1	1	1
Ī	1	0	1	1	1
Ī	0	0	0	0	1

f. $(p \to q) \Rightarrow ((p \land r) \to (q \land r))$:

p	q	r	$(p \wedge r)$	$(q \wedge r)$	$(p \to q)$	$((p \land r) \to (q \land r))$	
1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1
1	0	1	1	0	0	0	1
0	0	1	0	0	1	1	1
1	1	0	0	0	1	1	1
0	1	0	0	0	1	1	1
1	0	0	0	0	0	1	1
0	0	0	0	0	1	1	1

where "..." stands for $((p \rightarrow q) \rightarrow ((p \land r) \rightarrow (q \land r)))$

g. $(\neg p) \Rightarrow (p \rightarrow q)$:

ſ	\overline{p}	q	$(\neg p)$	$(p \to q)$	$((\neg p) \to (p \to q))$
Ī	1	1	0	1	1
Ī	0	1	1	1	1
Ī	1	0	0	0	1
Ī	0	0	1	1	1

• Alternatively, one can show that $P \to Q$ is a tautology by going through a proof by contradiction. Assume that the whole implication is false and lead this assumption to a contradiction ($\frac{1}{2}$). In what follows, the procedure will be illustrated by means of (1-b) and (1-c).

(1-b)

If p = 0 then $(\neg p) = 1$. But if also q = 1, then it is impossible that $((\neg p) \land q) = 0$. Thus, there is a contradiction.

to be continued on next page \hookrightarrow

Excercise 2: Conditional proofs

• Give a conditional proof of the validity of each of the following arguments. (Note: In the solutions to the previous exercise sheet, the first argument was proven without auxiliary assumption, the second argument was proven indirectly, namely by contradiction. The present task is to provide a direct conditional proof for both.)