Solutions 4

Excercise 1: Relations and functions
Let $A=\{a, b, c\}$ and $B=\{1,2\}$.

- How many distinct relations are there from A to B ?

Each member of the three members of A can relate to only one of the two members of B (two different possibilities), to both, or to none. This means that there are $4^{3}=64$ different relations. Alternatively, one may recall that for a relation R from A to B it holds that $R \subseteq A \times B$. The number of all such relations is $|\wp(A \times B)|$, which, in the present case, is 64.

- How many of these relations are total functions from A to B ?

The total functions are those relations that map every member of A to one member of B (for which there are two possibilities, 1 and 2). This means that there are $2^{3}=8$ such functions.

- How many of these total functions are onto (surjective)?

A function F from A to B is onto if every member of B is in the range of F. There are only two functions among the 8 total functions from above for which this is not the case: $F_{1}=\{\langle a, 1\rangle,\langle b, 1\rangle,\langle c, 1\rangle\}$ and $F_{2}=\{\langle a, 2\rangle,\langle b, 2\rangle,\langle c, 2\rangle\}$. This means that 6 of the 8 functions from above are onto.

- How many of these total functions are one-to-one (injective)?

Since there are more members in A than in B, and since the functions under considerations are total, it follows that none of them can be one-to-one: two members of A always have to be mapped to one and the same member of B.

- Do any of these functions have inverses that are also total functions?

For the inverse F^{-1} of a function F to also be a function, F must be one-to-one. Since this is not the case for any of the functions under consideration (see previous question), their inverses are not functions.

- Answer the same questions for all relations from B to A.

Every of the two members of B can relate in 8 different ways to members of A (it can relate to a, to b, to c, to a and b, to a and c, etc., or to nothing, which makes 8 possibilities). The total number of relations is therefore $8^{2}=64$. The number of total functions among these relations is $3^{2}=9$. None of them are onto (since there are more members in A than in B). There are three functions that are not one-to-one ($F_{1}=\{\langle 1, a\rangle,\langle 2, a\rangle\}$, $F_{2}=\{\langle 1, b\rangle,\langle 2, b\rangle\}, F_{3}=\{\langle 1, c\rangle,\langle 2, c\rangle\}$), which leaves 6 of the 9 functions being one-to-one. Since none of the functions are onto, this means that none of them has an inverse that also is a total function.

Excercise 2: Composition

- Let R_{1} and R_{2} be the following two relations in $A=\{1,2,3,4\}$:
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 4,1\rangle\}$
b. $\quad R_{2}=\{\langle 3,4\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 1,3\rangle\}$
- Form the composites $R_{2} \circ R_{1}$ and $R_{1} \circ R_{2}$. Are they equal?
a. $\quad R_{2} \circ R_{1}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,4\rangle,\langle 4,2\rangle,\langle 4,3\rangle,\langle 4,4\rangle\}$
b. $\quad R_{1} \circ R_{2}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,4\rangle\}$
c. $\quad R_{2} \circ R_{1} \neq R_{1} \circ R_{2}$
- Show that $R_{1}^{-1} \circ R_{1} \neq i d_{A}$ and that $R_{2}^{-1} \circ R_{2} \nsubseteq i d_{A}$.
a. $\quad R_{1}^{-1} \circ R_{1}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,4\rangle,\langle 3,3\rangle,\langle 3,4\rangle,\langle 4,1\rangle,\langle 4,2\rangle$,

$$
\begin{equation*}
\langle 4,3\rangle,\langle 4,4\rangle\} \neq i d_{A}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle\} \tag{3}
\end{equation*}
$$

b. $\quad R_{2}^{-1} \circ R_{2}=\{\langle 3,3\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 1,1\rangle,\langle 1,3\rangle,\langle 1,2\rangle,\langle 2,2\rangle,\langle 2,1\rangle,\langle 2,3\rangle\} \nsubseteq i d_{A}$

Excercise 3: Composition and the inverse

- Let F and G in (4-a,b) be functions from $A=\{a, b, c\}$ to $B=\{1,2,3,4\}$ and from $C=\{1,2,3,4\}$ to $D=\{p, q, r\}$, respectively. Show that $(G \circ F)^{-1}=F^{-1} \circ G^{-1}$.
a. $\quad F=\{\langle a, 1\rangle,\langle b, 3\rangle,\langle c, 3\rangle\}$
b. $\quad G=\{\langle 1, p\rangle,\langle 2, q\rangle,\langle 3, q\rangle,\langle 4, r\rangle\}$
a. $\quad G \circ F=\{\langle a, p\rangle,\langle b, q\rangle,\langle c, q\rangle\}$
b. $\quad(G \circ F)^{-1}=\{\langle p, a\rangle,\langle q, b\rangle,\langle q, c\rangle\}$
(6) a. $\quad F^{-1}=\{\langle 1, a\rangle,\langle 3, b\rangle,\langle 3, c\rangle\}$
b. $\quad G^{-1}=\{\langle p, 1\rangle,\langle q, 2\rangle,\langle q, 3\rangle,\langle r, 4\rangle\}$
c. $\quad F^{-1} \circ G^{-1}=\{\langle p, a\rangle,\langle q, b\rangle,\langle q, c\rangle\}=(5-b)$

Excercise 4: Reflexivity and symmetry

- Give the status for the two relations "is a child of" and "is a brother of" (in the set of human beings) with respect to reflexivity and symmetry. Only name the strongest relevant property if the relation in question has more than one (e.g., a relation that is irreflexive is also non-reflexive, but not vice versa: irreflexivity is stronger than nonreflexivity).
a. "is a child of": irreflexive, asymmetric
b. "is a brother of": irreflexive, non-symmetric

Excercise 5: More reflexivity and symmetry

- Let $A=\{1,2,3,4\}$.
- Describe the properties of each relation R_{i} in A below, of its inverse (R_{i}^{-1}), and of its complement (R_{i}^{\prime}) with respect to reflexivity and symmetry.
(8)
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 4,1\rangle\}:$
reflexive, anti-symmetric
b. $\quad R_{1}^{-1}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 4,3\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 1,4\rangle\}$:
reflexive, anti-symmetric
c. $\quad R_{1}^{\prime}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,2\rangle,\langle 4,3\rangle\}$:
irreflexive, non-symmetric
(9) \quad a. $\quad R_{2}=\{\langle 3,4\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 1,3\rangle\}$:
irreflexive, asymmetric
b. $\quad R_{2}^{-1}=\{\langle 4,3\rangle,\langle 2,1\rangle,\langle 4,1\rangle,\langle 3,2\rangle,\langle 4,2\rangle,\langle 3,1\rangle\}$:
irreflexive, asymmetric
c. $\quad R_{2}^{\prime}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle,\langle 4,4\rangle\}$: reflexive, anti-symmetric
(10)
a. $\quad R_{3}=\{\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 1,3\rangle,\langle 4,3\rangle,\langle 4,2\rangle\}$:
non-reflexive, symmetric
b. $\quad R_{3}^{-1}=\{\langle 4,2\rangle,\langle 1,3\rangle,\langle 4,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 3,4\rangle,\langle 2,4\rangle\}$:
non-reflexive, symmetric
c. $\quad R_{3}^{\prime}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 4,1\rangle,\langle 4,4\rangle\}$:
non-reflexive, symmetric
(11) \quad a. $\quad R_{4}=\{\langle 1,1\rangle,\langle 2,4\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 4,4\rangle,\langle 3,3\rangle,\langle 4,2\rangle\}:$
reflexive, symmetric
b. $\quad R_{4}^{-1}=\{\langle 1,1\rangle,\langle 4,2\rangle,\langle 3,1\rangle,\langle 2,2\rangle,\langle 1,3\rangle,\langle 4,4\rangle,\langle 3,3\rangle,\langle 2,4\rangle\}$: reflexive, symmetric
c. $\quad R_{4}^{\prime}=\{\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 3,4\rangle,\langle 4,1\rangle,\langle 4,3\rangle\}$: irreflexive, symmetric

