Solutions 1

Excercise 1: Identifying sets
Which of the following are valid sets, and which are not?


```
b. {Obama, 'Obama', {Obama}}
c. {x|x is a multiple of 17}
```



```
e. {{{{{\Phi}}}}}
f. {} (also written as \emptyset)
```

All of (1-a-f) are valid sets: (1-a) is the set of (white) chess pieces. (1-b) is the set containing the person Barack Obama, the name 'Obama', and the set containing the person Barack Obama. (1-c) is an infinite set, and therefore it is impossible to list all its members (but one may resort to the dot/etc.-notation $\{17,34,51,68, \ldots\}),(1-\mathrm{d})$ is a random collection, (1-e) is the set containing (as its only member) the set $\{\{\{\{\Phi\}\}\}\}$; finally, (1-f) is the empty set (the set that does not contain anything).

Excercise 2: Identifying set members and sets

- What are the members of the following sets?
(2) a. $\quad\{x \mid x$ is a multiple of 12 below 60$\}$
b. $\quad\{x \mid x$ is the set containing all multiples of 12 below 60$\}$
c. \{vowel, yellow, 'gelb', \{vowel, yellow, 'gelb'\}, Φ \}
d. $\{\{\{\{\{\Phi\}\}\}\}\}$
e. \{Bart\}
f. $\{$ Bart, 'Bart', $\{$ Bart $\}\}$

The members of (2-a) are $12,24,36,48$. The only member of (2-b) is the set $\{12,24,36$, $48\}$. The members of ($2-\mathrm{c}$) are the concepts vowel and yellow, the name 'gelb', the set containing these three elements, and the Greek letter Φ. The only member of ($2-\mathrm{d}$) is the set $\{\{\{\{\Phi\}\}\}\}$. The only member of (2-e) is a person named Bart (possibly the Simpson character). And (2-f) contains this person plus the name 'Bart' plus the set containing the person Bart.

- For the set $\mathrm{OS}=\{$ Olaf Scholz $\}$, which of the following is True or False?
(3) a. Olaf Scholz is a member of OS.
b. \{Olaf Scholz\} is a member of OS.
c. The current Bundeskanzlerin of Germany is a member of OS.
(3-a) is obviously true, (3-b) is false because OS does not have a set as its member. (3-c) is true again because the description given refers to Olaf Scholz (which is the only member of the set).
- What is the set whose only member is $\{\mathrm{S}\}$?

Obviously, the answer is $\{\{\mathrm{S}\}\}$.

Excercise 3: List to predicate notation

- Convert each of the sets in list notation below to predicate notation.
(4)
a. $\quad\{2,4,6,8,10\}$
b. \{Bart, Lisa, Homer, Marge, Maggie\}
c. \{Leipzig\}
d. \{ 'Bart', 'Lisa', 'Homer’, 'Marge’, 'Maggie'\}
e. \{\}

Note that often one can come up with various different descriptions, all defining the same set. Possible answers are the following. (4-a): $\{\mathrm{x} \mid \mathrm{x}$ is an even natural number smaller than 12 (exluding 0) $\}$. (Just one alternative: $\{\mathrm{x} \mid \mathrm{x}$ is a non-negative even number smaller than 11$\}$.) (4-b): $\{x \mid x$ is a character of the (fictional) Simpson family $\}$. (4-c): $\{x \mid x$ is the city where Leibniz was born $\}$. (4-d): $\{x \mid x$ is the name of a character of the (fictional) Simpson family $\}$. (4-e): $\{x \mid x$ is an even prime number that does not equal 2$\}$.

Excercise 4: Predicate to list notation

- Convert each of the sets in predicate notation below to list notation.
a. $\quad\{x \mid x$ is an odd integer smaller than 12\}
b. $\quad\{\mathrm{z} \mid \mathrm{z}$ is the name of the first president of the USA $\}$
c. $\quad\{\mathrm{a} \mid \mathrm{a}$ is a triangular circle $\}$
(5-a): $\{11,9,7,5,3,1,-1,-3,-5, \ldots\}$ (again, listing all elements is impossible because the set is infinite); (5-b): \{‘George Washington’ \}; (5-c): \{ \}.

Excercise 5: Subset superset relations

- List the proper subset or proper superset relations that hold between the following sets.
(6) a. $A=\{x \mid x$ is a Beatles song written by Paul McCartney $\}$
b. $\quad C=\{x \mid x$ is a Beatles song written by Ringo Starr $\}$
c. $\quad \mathrm{D}=\{$ Let it be, Maxwell's Silver Hammer, Hey Jude $\}$
d. $F=\{ \}$
$\mathrm{D} \subset \mathrm{A}, \mathrm{A} \supset \mathrm{D}(\mathrm{D}$ exlusively contains songs written by Paul McCartney)
$\mathrm{F} \subset \mathrm{A}, \mathrm{A} \supset \mathrm{F}$ (the empty set is subset of every set)
$\mathrm{F} \subset \mathrm{C}, \mathrm{C} \supset \mathrm{F}$ (Ringo Starr actually wrote songs, hence $\mathrm{F} \neq \mathrm{C}$)
$\mathrm{F} \subset \mathrm{D}, \mathrm{D} \supset \mathrm{F}$ (the empty set is subset of every set)

