Modul 04-006-1001: Formale Grundlagen (Logik)

Solutions 1

Excercise 1: Identifying sets Which of the following are valid sets, and which are not?

- (1) a. {魚, 響, 當, 邕, ⑤}
 - b. {Obama, 'Obama', {Obama}}
 - c. $\{x \mid x \text{ is a multiple of } 17\}$
 - d. {x, sofa, prime, Pizza, 0, Φ , $\langle \Omega$, x}
 - e. $\{\{\{\{\{\Phi\}\}\}\}\}\}$
 - f. {} (also written as \emptyset)

All of (1-a-f) are valid sets: (1-a) is the set of (white) chess pieces. (1-b) is the set containing the person Barack Obama, the name 'Obama', and the set containing the person Barack Obama. (1-c) is an infinite set, and therefore it is impossible to list all its members (but one may resort to the dot/etc.-notation {17, 34, 51, 68, ...}), (1-d) is a random collection, (1-e) is the set containing (as its only member) the set {{{ $\{\{\Phi\}\}}\}}; finally, (1-f) is the empty set (the set that does not contain anything).$

Excercise 2: Identifying set members and sets

- What are the members of the following sets?
- (2) a. $\{x \mid x \text{ is a multiple of } 12 \text{ below } 60\}$
 - b. $\{x \mid x \text{ is the set containing all multiples of } 12 \text{ below } 60\}$
 - c. {vowel, yellow, 'gelb', {vowel, yellow, 'gelb'}, Φ }
 - d. $\{\{\{\{\Phi\}\}\}\}\}\}$
 - e. {Bart}
 - f. {Bart, 'Bart', {Bart}}

The members of (2-a) are 12, 24, 36, 48. The only member of (2-b) is the set {12, 24, 36, 48}. The members of (2-c) are the concepts vowel and yellow, the name 'gelb', the set containing these three elements, and the Greek letter Φ . The only member of (2-d) is the set {{ $\{\{\Phi\}\}\}}$. The only member of (2-e) is a person named Bart (possibly the Simpson character). And (2-f) contains this person plus the name 'Bart' plus the set containing the person Bart.

- For the set OS = {Olaf Scholz}, which of the following is True or False?
- (3) a. Olaf Scholz is a member of OS.
 - b. {Olaf Scholz} is a member of OS.
 - c. The current Bundeskanzlerin of Germany is a member of OS.

(3-a) is obviously true, (3-b) is false because OS does not have a set as its member. (3-c) is true again because the description given refers to Olaf Scholz (which is the only member of the set).

• What is the set whose only member is {S}?

Obviously, the answer is $\{\{S\}\}$.

Excercise 3: List to predicate notation

• Convert each of the sets in list notation below to predicate notation.

- $(4) \qquad a. \quad \{2, 4, 6, 8, 10\}$
 - b. {Bart, Lisa, Homer, Marge, Maggie}
 - c. {Leipzig}
 - d. {'Bart', 'Lisa', 'Homer', 'Marge', 'Maggie'}
 - e. {}

Note that often one can come up with various different descriptions, all defining the same set. Possible answers are the following. (4-a): $\{x \mid x \text{ is an even natural number smaller than 12}$ (exluding 0)}. (Just one alternative: $\{x \mid x \text{ is a non-negative even number smaller than 11}.)$ (4-b): $\{x \mid x \text{ is a character of the (fictional) Simpson family}. (4-c): <math>\{x \mid x \text{ is the city where Leibniz was born}\}$. (4-d): $\{x \mid x \text{ is the name of a character of the (fictional) Simpson family}\}$. (4-e): $\{x \mid x \text{ is an even prime number that does not equal 2}.$

Excercise 4: Predicate to list notation

- Convert each of the sets in predicate notation below to list notation.
- (5) a. $\{x \mid x \text{ is an odd integer smaller than } 12\}$
 - b. $\{z \mid z \text{ is the name of the first president of the USA}\}$
 - c. $\{a \mid a \text{ is a triangular circle}\}$

(5-a): $\{11, 9, 7, 5, 3, 1, -1, -3, -5, ...\}$ (again, listing all elements is impossible because the set is infinite); (5-b): {'George Washington'}; (5-c): {}.

Excercise 5: Subset superset relations

- List the proper subset or proper superset relations that hold between the following sets.
- (6) a. $A = \{ x \mid x \text{ is a Beatles song written by Paul McCartney} \}$
 - b. $C = \{ x \mid x \text{ is a Beatles song written by Ringo Starr} \}$
 - c. D = {Let it be, Maxwell's Silver Hammer, Hey Jude}
 - d. $F = \{ \}$
- $D \subset A$, $A \supset D$ (D exlusively contains songs written by Paul McCartney)
- $F \subset A$, $A \supset F$ (the empty set is subset of every set)
- $F \subset C, C \supset F$ (Ringo Starr actually wrote songs, hence $F \neq C)$
- $F \subset D$, $D \supset F$ (the empty set is subset of every set)