Modul 04-006-1001: Formale Grundlagen (Logik)

Excercises 7

Excercise 1: Truth tables

• Construct truth tables for the following statements. Note whether any of them are logically equivalent.

(1) a.
$$(p \lor (\neg q))$$

b. $(\neg((\neg p) \land q))$ c. $((p \leftrightarrow q) \land p)$ d. $((p \rightarrow (q \lor (\neg r))) \land (p \rightarrow (q \lor (\neg r))))$ e. $(((p \rightarrow q) \rightarrow p) \rightarrow q)$

Excercise 2: Tautology, contradiction, contingency

- Let *p*, *q*, and *r* be atomic statements. Which of the following are tautologies, contradictions, or contingent statements?
- (2) a. $(p \lor (\neg p))$ b. $(p \lor q)$
 - c. $(p \lor q)$ c. $((p \land q) \to (p \lor r))$
 - d. $((\neg p) \land (\neg (p \rightarrow q)))$
 - e. $((p \lor r) \to (\neg p))$
- *Excercise 3*: Definition of connectives
 - Certain of the logical connectives can be defined in terms of others. Example: (p → q) can be defined as ((¬p) ∨ q) (i.e. → is expressible in terms of ¬ and ∨), since the two statements are logically equivalent.
 - Define \rightarrow in terms of \land and \neg .
 - Define \wedge in terms of \vee and \neg .
 - Define \leftrightarrow in terms of \rightarrow and \wedge .
 - Show how the five connectives can be reduced to \wedge and $\neg.$

Excercise 4: Laws of statement logic

- Prove the following equivalence: $((p \land q) \lor p) \Leftrightarrow p$.
- Use the laws of statement logic (and, possibly, the equivalence you proved previously) to reduce each of the following statements to the simplest equivalent statement.

(3) a.
$$((\neg p) \lor (p \land q))$$

b. $(((\neg p) \land q) \lor (\neg q)$

- b. $(((\neg p) \land q) \lor (\neg (p \lor q)))$
- c. $((\neg p) \land ((p \land q) \lor (p \land r)))$
- $\mathbf{d.} \quad (((\neg p) \land q) \leftrightarrow (p \lor q))$