Excercises 5

Excercise 1: Transitivity and connectedness
Let $A=\{1,2,3,4\}$.

- Describe the properties of each relation R_{i} in A below, of its inverse (R_{i}^{-1}), and of its complement (R_{i}^{\prime}) with respect to transitivity and connectedness.
(1)
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 4,1\rangle\}$
b. $\quad R_{2}=\{\langle 3,4\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 1,3\rangle\}$
c. $\quad R_{3}=\{\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 1,3\rangle,\langle 4,3\rangle,\langle 4,2\rangle\}$
d. $\quad R_{4}=\{\langle 1,1\rangle,\langle 2,4\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 4,4\rangle,\langle 3,3\rangle,\langle 4,2\rangle\}$

Excercise 2: Partitions

- Is any of the R_{i} in exercise 1 an equivalence relation (see excercise 5 on sheet 4 for reflexivity and symmetry)? If so, then give the partition that is induced on A.
- Give the equivalence relation that induces the following partition on A : $P=\{\{1\},\{2,3\},\{4\}\}$.
- How many different partitions on A are possible?

Excercise 3: Orders

Let $A=\{1,2,3,5,6,10,15,30\}$ and let R be the relation in A defined as $R=\{\langle x, y\rangle \mid x$ divides y without remainder $\}$

- List the members of R and determine whether it forms an order (and if so, whether the order is weak or strong).
- Do the same for the set $\wp(B)$, where $B=\{a, b, c\}$, and the relation "is a subset of".

