Excercises 4

Excercise 1: Relations and functions
Let $A=\{a, b, c\}$ and $B=\{1,2\}$.

- How many distinct relations are there from A to B ?
- How many of these are total functions from A to B ?
- How many of these total functions are onto (surjective)?
- How many of these total functions are one-to-one (injective)?
- Do any of these functions have inverses that are also total functions?
- Answer the same questions for all relations from B to A.

Excercise 2: Composition

Let R_{1} and R_{2} be the following two relations in $A=\{1,2,3,4\}$:
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 4,1\rangle\}$
b. $\quad R_{2}=\{\langle 3,4\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 1,3\rangle\}$

- Form the composites $R_{2} \circ R_{1}$ and $R_{1} \circ R_{2}$. Are they equal?
- Show that $R_{1}^{-1} \circ R_{1} \neq i d_{A}$ and that $R_{2}^{-1} \circ R_{2} \nsubseteq i d_{A}$.

Excercise 3: Composition and the inverse

- Let F and G in (2-a,b) be functions from $A=\{a, b, c\}$ to $B=\{1,2,3,4\}$ and from $C=\{1,2,3,4\}$ to $D=\{p, q, r\}$, respectively. Show that $(G \circ F)^{-1}=F^{-1} \circ G^{-1}$.
(2)
a. $\quad F=\{\langle a, 1\rangle,\langle b, 3\rangle,\langle c, 3\rangle\}$
b. $\quad G=\{\langle 1, p\rangle,\langle 2, q\rangle,\langle 3, q\rangle,\langle 4, r\rangle\}$

Excercise 4: Reflexivity and symmetry

- Give the status for the two relations "is a child of" and "is a brother of" (in the set of human beings) with respect to reflexivity and symmetry. Only mention the strongest property if the relation in question has more than one (e.g., a relation that is irreflexive is also non-reflexive, but not vice versa).

Excercise 5: More reflexivity and symmetry
Let $A=\{1,2,3,4\}$.

- Describe the properties of each relation R_{i} in A below, of its inverse (R_{i}^{-1}), and of its complement (R_{i}^{\prime}) with respect to reflexivity and symmetry.
a. $\quad R_{1}=\{\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 4,1\rangle\}$
b. $\quad R_{2}=\{\langle 3,4\rangle,\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 1,3\rangle\}$
c. $\quad R_{3}=\{\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,4\rangle,\langle 2,2\rangle,\langle 1,3\rangle,\langle 4,3\rangle,\langle 4,2\rangle\}$
d. $\quad R_{4}=\{\langle 1,1\rangle,\langle 2,4\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 4,4\rangle,\langle 3,3\rangle,\langle 4,2\rangle\}$

