Excercises 3

Excercise 1: Set operations and membership

- Given the sets in (1), what are the sets defined in (2)?
- Is a a member of $\{A, B\}$?
- Is a a member of $A \cup B$?
(1) a. $A=\{a, b, c\}$
b. $\quad B=\{c, d\}$
c. $C=\{d, e, f\}$
(2)
a. $\quad A \cup B$
b. $\quad A \cap B$
c. $A \cup(B \cap C)$
d. $\quad C \cup A$
e. $\quad B \cup \emptyset$
f. $A \cap(B \cap C)$
g. $\quad A-B$

Excercise 2: Set theoretic equations

- Show by using the set-theoretic equalities that were introduced (idempotent laws, commutative laws, etc.) that the following holds for any sets A and $B: A \cap(B-A)=\emptyset$.

Excercise 3: Venn diagramms and distributive law

- Show by means of Venn diagramms that the equation in (3) holds (one of the distributive laws).

$$
\begin{equation*}
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \tag{3}
\end{equation*}
$$

Excercise 4: Symmetric difference

- The symmetric difference between two sets A and B is defined as in (4-a).
- Draw the Venn diagramm for the symmetric difference of two sets.
- Show that (4-b) holds by making reference to set theoretic equalities. Verify that the Venn diagramm for $(A-B) \cup(B-A)$ is the same as the diagramm for $A+B$.
- Show that for all sets A and $B: A+B=B+A$.
(4)
a. $\quad A+B=_{\text {def }}(A \cup B)-(A \cap B)$
b. $A+B=_{\text {def }}(A-B) \cup(B-A)$

Excercise 5: More on symmetric difference

- Redefine the sets in (5), getting rid of the + -operator.
- Show that the statements in $(6-a, b)$ are correct.
(5)
a. $A+A$
b. $A+U$
c. $A+\emptyset$
d. $A+B$, where $A \subseteq B$
e. $A+B$, where $A \cap B=\emptyset$
(6) \quad a. $\quad((A-B)+(B-A))=A+B$
b. $\quad(A+B) \subseteq B$ iff $A \subseteq B$

Excercise 6: Carthesian products and relations

- Given are the sets $A=\{b, c\}$ and $B=\{2,3\}$.
- Specify the sets in (7) by listing their members.
a. $\quad A \times B$
b. $\quad B \times A$
c. $A \times A$
d. $(A \cup B) \times B$
e. $\quad(A \cap B) \times B$
f. $\quad(A-B) \times(B-A)$
- Consider now the following relation from A to $(A \cup B)$: $R=\{\langle b, b\rangle,\langle b, 2\rangle,\langle c, 2\rangle,\langle c, 3\rangle\}$
- Specify the domain and the range of R.
- Specify R^{\prime} and R^{-1}.
- Is $\left(R^{\prime}\right)^{-1}$ equal to $\left(R^{-1}\right)^{\prime}$?

