Modul 04-006-1001:

WiSe 2023-2024

Formale Grundlagen (Logik)

Excercises 2

Excercise 1:

• Besides the list notation and the predicate notation there is a third way to define sets: by recursive rules. An example for such a definition is given in (1-b), which defines the set of all even natural numbers greater than or equal to 4 (cf. (1-a)) by list notation :

(1) $E = \{4, 6, 8, 10, \ldots\}$ (i) $4 \in E$, b.

(ii) if $x \in E$, then $x + 2 \in E$.

- (1-b) contains two clauses: the base clause (i), which defines one concrete element as being a member of E (namely 4), and the recursive clause (ii), which allows to generate all other members of E on the basis of 4.
- This is called a recursive definition because the clause (ii), which is supposed to define the members of E, makes reference to (one property of) E already. Note that the definition is not circular because of the existence of the base clause (i).
- Give two definitions for each of the following sets, one in terms of predication and one in terms of recursive rules.

(2) $A = \{5, 10, 15, 20, \ldots\}$

 $B = \{7, 17, 27, 37, \ldots\}$

 $C = \{300, 301, 302, \dots, 399, 400\}$

d. $D = \{3, 4, 7, 8, 11, 12, 15, 16, 19, 20, \ldots\}$

e. $E = \{0, 2, -2, 4, -4, 6, -6, \ldots\}$ f. $F = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\}$

Excercise 2:

• Given the sets in (3), answer the questions in (4).

 $S_1 = \{\emptyset, \{A\}, A\}$ (3)

b. $S_2 = A$

 $S_6 = \emptyset$

c. $S_3 = \{A\}$

c. $S_3 = \{A\}$ d. $S_4 = \{\{A\}\}$

g. $S_7 = \{\emptyset\}$ h. $S_8 = \{\{\emptyset\}\}$

e. $S_5 = \{\{A\}, A\}$

 $S_9 = \{\emptyset, \{\emptyset\}\}$ i.

Of the sets S_1 – S_9 , . . . (4)

 \dots which are members of S_1 ?

 \dots which are subsets of S_1 ?

c. ... which are members of S_9 ?

... which are subsets of S_9 ?

e. ... which are members of S_4 ?

 \dots which are subsets of S_4 ?

Excercise 3:

- Specify each of the sets in (5) by listing its members ($\wp(A)$ = power set of A):
- (5) a. $\wp(\{a,b,c\})$

d. $\wp(\{\emptyset\})$

b. $\wp(\{a\})$

e. $\wp(\wp(\{a,b\}))$

c. $\wp(\emptyset)$

Excercise 4:

- Given the sets in (6), list the members of the sets in (7).
- (6) a. $A = \{a, b, c, 2, 3, 4\}$
 - b. $B = \{a, b\}$

e. $E = \{a, b, \{c\}\}$

c. $C = \{c, 2\}$

f. $F = \{\}$

d. $D = \{b, c\}$

g. $G = \{\{a, b\}, \{c, 2\}\}$

- (7) a. $B \cup C$
 - b. $A \cup B$
- g. $A \cap E$
- 1. B-A

- c. $D \cup E$ d. $B \cup G$
- h. $C \cap D$
- m. C-Dn. E-F

- e. $D \cup F$
- i. $B \cap F$ j. $C \cap E$
- o. F A

- f. $A \cap B$
- A B

Excercise 5:

- Given the sets in (6), and assuming that the universe of discourse U is defined as $\bigcup \{A, B, C, D, E, F, G\}$, list the members of the following sets:
- (8) a. $(A \cap B) \cup C$
 - b. $A \cap (B \cup C)$
 - c. $(B \cup C) (C \cup D)$
 - d. $A \cap (C D)$
 - e. $(A \cap C) (A \cap D)$
 - f. G'
 - g. $(D \cup E)'$

- h. $D' \cap E'$
- i. $F \cap (A B)$
- j. $(A \cap B) \cup U$
- k. $(C \cup D) \cap U$
- 1. $C \cap D'$
- m. $G \cup F'$