Excercises 2

Excercise 1:

- Besides the list notation and the predicate notation there is a third way to define sets: by recursive rules. An example for such a definition is given in (1-b), which defines the set of all even natural numbers greater than or equal to 4 (cf. (1-a)) by list notation :
(1) \quad a. $E=\{4,6,8,10, \ldots\}$
b. (i) $4 \in E$,
(ii) if $x \in E$, then $x+2 \in E$.
- (1-b) contains two clauses: the base clause (i), which defines one concrete element as being a member of E (namely 4), and the recursive clause (ii), which allows to generate all other members of E on the basis of 4 .
- This is called a recursive definition because the clause (ii), which is supposed to define the members of E, makes reference to (one property of) E already. Note that the definition is not circular because of the existence of the base clause (i).
- Give two definitions for each of the following sets, one in terms of predication and one in terms of recursive rules.
(2)
a. $\quad A=\{5,10,15,20, \ldots\}$
b. $\quad B=\{7,17,27,37, \ldots\}$
c. $C=\{300,301,302, \ldots, 399,400\}$
d. $D=\{3,4,7,8,11,12,15,16,19,20, \ldots\}$
e. $E=\{0,2,-2,4,-4,6,-6, \ldots\}$
f. $F=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$

Excercise 2:

- Given the sets in (3), answer the questions in (4).
(3)
a. $\quad S_{1}=\{\emptyset,\{A\}, A\}$
b. $\quad S_{2}=A$
c. $\quad S_{3}=\{A\}$
d. $S_{4}=\{\{A\}\}$
e. $S_{5}=\{\{A\}, A\}$
f. $\quad S_{6}=\emptyset$
g. $\quad S_{7}=\{\emptyset\}$
h. $\quad S_{8}=\{\{\emptyset\}\}$
i. $\quad S_{9}=\{\emptyset,\{\emptyset\}\}$
(4) Of the sets $S_{1}-S_{9}, \ldots$
a. ... which are members of S_{1} ?
b. ... which are subsets of S_{1} ?
c. ... which are members of S_{9} ?
d. ... which are subsets of S_{9} ?
e. ... which are members of S_{4} ?
f. ... which are subsets of S_{4} ?

Excercise 3:

- Specify each of the sets in (5) by listing its members $(\wp(A)=$ power set of $A)$:
a. $\wp(\{a, b, c\})$
b. $\wp(\{a\})$
c. $\wp(\emptyset)$
d. $\wp(\{\emptyset\})$
e. $\wp(\wp(\{a, b\}))$

Excercise 4:

- Given the sets in (6), list the members of the sets in (7).
(6) a. $A=\{a, b, c, 2,3,4\}$
b. $\quad B=\{a, b\}$
e. $E=\{a, b,\{c\}\}$
c. $\quad C=\{c, 2\}$
f. $\quad F=\{ \}$
d. $\quad D=\{b, c\}$
g. $G=\{\{a, b\},\{c, 2\}\}$
(7)
a. $B \cup C$
b. $\quad A \cup B$
c. $\quad D \cup E$
g. $\quad A \cap E$
d. $B \cup G$
h. $\quad C \cap D$

1. $B-A$
i. $\quad B \cap F$
m. $\quad C-D$
e. $D \cup F$
j. $\quad C \cap E$
n. $E-F$
f. $\quad A \cap B$
k. $\quad A-B$
o. $\quad F-A$

Excercise 5:

- Given the sets in (6), and assuming that the universe of discourse U is defined as $\bigcup\{A, B, C, D, E, F, G\}$, list the members of the following sets:
(8)
a. $(A \cap B) \cup C$
b. $\quad A \cap(B \cup C)$
h. $\quad D^{\prime} \cap E^{\prime}$
c. $(B \cup C)-(C \cup D)$
i. $\quad F \cap(A-B)$
d. $\quad A \cap(C-D)$
e. $(A \cap C)-(A \cap D)$
j. $\quad(A \cap B) \cup U$
f. $\quad G^{\prime}$
g. $\quad(D \cup E)^{\prime}$
k. $\quad(C \cup D) \cap U$

1. $C \cap D^{\prime}$
m. $G \cup F^{\prime}$
