Modul 04-006-1001: Formale Grundlagen (Logik)

Excercises 10

Excercise 1: Translation into English

- Translate the following English sentences into predicate logic. Choose your own variables and predicate letters, giving the key.
- (1) a. Everything is black or white.
 - b. A dog is a quadruped.
 - c. Everybody loves somebody.
 - d. There is someone whom everyone loves.
 - e. No one loves himself, unless it is John.
 - f. People who live in Leipzig love it.
 - g. If someone does not love Leipzig, he does not know it.
 - h. Give him a finger, and he takes the whole hand.
 - i. If someone is noisy, he annoys everybody.
 - j. Although no one made noise, John was annoyed.
 - k. Only drunk drivers under 18 cause bad accidents.

Excercise 2: Bound vs. free variables

- For each of the expressions below, state whether the statement is open (i.e., contains unbound variables). Name the free variables (i.e. the variables that are unbound).
- (2) a. $(\forall x)(P(x) \lor Q(x,y))$
 - b. $(\forall y)(Q(x) \rightarrow (\forall z)P(y,z))$
 - c. $(\forall x)(P(x) \to (\exists y)(Q(y) \to (\forall z)R(y,z)))$

Excercise 3: Predicate logic; models and quantifiers

- Evaluate the truth-values of the expressions in (4-a-c) based on the model M given in (3):
- (3) $M = \langle D, I \rangle$, where:
 - a. $D = \{Sokrates, Aristotle, Plato, Michelangelo, Bach, Tarski\}$

b.	I =	term	value	predicate	value
		s	Sokrates	Н	{Sokrates, Aristotle, Plato}
		m	Michelangelo	M	{Sokrates, Aristotle, Plato,
		b	Bach		Michelangelo, Bach, Tarski}
		t	Tarski	L	$\{\langle Sokrates, Sokrates \rangle, \langle Sokrates, Aristotle \rangle, \rangle$
		a	Aristotle		$\langle Michelangelo, Bach \rangle, \langle Bach, Michelangelo \rangle,$
		p	Plato		$\langle Tarski, Plato \rangle, \langle Plato, Michelangelo \rangle,$
					$\langle Aristotle, Tarski \rangle \}$

- (4) a. $[\![(\exists y)(\forall x)L(x,y)]\!]^M =$
 - b. $\llbracket (\forall x) \neg (\exists y) L(x, y) \rrbracket^M =$
 - c. $\llbracket ((\exists z)M(z) \land (\forall y)(H(y) \to L(y,b))) \rrbracket^M =$ continues on next page \hookrightarrow

Exercises 4:

- Given the equivalences in (5), prove the equivalence between (6-a,b). Give the names of the laws of logic that you make reference to in your proof.
- (5) a. $(\neg(\forall x)(P(x))) \Leftrightarrow (\exists x) \neg(P(x))$ b. $(\neg(\exists x)(P(x))) \Leftrightarrow (\forall x) \neg(P(x))$
- (6) a. Kein Kind fährt nicht nach Rom.
 - b. Alle Kinder fahren nach Rom.