Modul 04-006-1001: Formale Grundlagen (Logik)

Excercises 3

Excercise 1: Set operations and membership

- Given the sets in (1), what are the sets defined in (2)?
- Is a a member of $\{A, B\}$?
- Is a a member of $A \cup B$?

(1)	a. b. c.	$A = \{a, b, c\} \\ B = \{c, d\} \\ C = \{d, e, f\}$
(2)	a.	$A \cup B$

a. $A \cup B$ e. $B \cup \emptyset$ b. $A \cap B$ f. $A \cap (B \cap C)$ c. $A \cup (B \cap C)$ g. A - Bd. $C \cup A$

Excercise 2: Set theoretic equations

• Show by using the set-theoretic equalities that were introduced (idempotent laws, commutative laws, etc.) that the following holds for any sets A and B: $A \cap (B - A) = \emptyset$.

Excercise 3: Venn diagramms and distributive law

• Show by means of Venn diagramms that the equation in (3) holds (one of the distributive laws).

(3)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Excercise 4: Symmetric difference

- The symmetric difference between two sets A and B is defined as in (4-a).
- Draw the Venn diagramm for the symmetric difference of two sets.
- Show that (4-b) holds by making reference to set theoretic equalities. Verify that the Venn diagramm for $(A B) \cup (B A)$ is the same as the diagramm for A + B.
- Show that for all sets A and B: A + B = B + A.
- (4) a. $A + B =_{def} (A \cup B) (A \cap B)$ b. $A + B =_{def} (A - B) \cup (B - A)$

Excercise 5: More on symmetric difference

- Redefine the sets in (5), getting rid of the +-operator.
- Show that the statements in (6-a,b) are correct.
- (5) a. A + A
 - b. A + U
 - c. $A + \emptyset$
 - d. A + B, where $A \subseteq B$
 - e. A + B, where $A \cap B = \emptyset$

(6) a.
$$((A-B) + (B-A)) = A + B$$

b. $(A+B) \subseteq B$ iff $A \subseteq B$

Excercise 6: Carthesian products and relations

- Given are the sets $A = \{b, c\}$ and $B = \{2, 3\}$.
- Specify the sets in (7) by listing their members.
- (7) a. $A \times B$ b. $B \times A$ c. $A \times A$ d. $(A \cup B) \times B$ e. $(A \cap B) \times B$ f. $(A - B) \times (B - A)$
 - Consider now the following relation from A to $(A \cup B)$: $R = \{ \langle b, b \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle, \langle c, 3 \rangle \}$
 - Specify the domain and the range of *R*.
 - Specify R' and R^{-1} .
 - Is $(R')^{-1}$ equal to $(R^{-1})'$?