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Abstract

New and recent axioms for cooperative games with transferable utilities are introduced. The non-
negative player axiom requires to assign a non-negative payoff to a player that belongs to coalitions
with non-negative worth only. The axiom of addition invariance on bi-partitions requires that the
payoff vector recommended by a value should not be affected by an identical change in worth of
both a coalition and the complementary coalition. The nullified solidarity axiom requires that if a
player who becomes null weakly loses (gains) from such a change, then every other player should
weakly lose (gain) too. We study the consequence of imposing some of these axioms in addition to
some classical axioms. It turns out that the resulting values or set of values have all in common to
split efficiently the worth achieved by the grand coalition according to an exogenously given weight
vector. As a result, we also obtain new characterizations of the equal division value.

Keywords: Equal division, weighted division values, non-negative player, addition invariance on
bi-partitions, nullified solidarity.
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1. Introduction

The axioms employed to design values in cooperative game theory with transferable utilities
can be divided up into punctual and relational axioms (see Thomson, 2012). A punctual axiom
applies to each game separately and a relational axiom relates payoff vectors of games that are
related in a certain way. This article introduces one new punctual axiom and one new relational
axiom.

The well-established null player axiom and nullifying player axiom are punctual axioms. The
former axiom recommends to assign a zero payoff to a null player, i.e., a player with zero contri-
butions to coalitions. The latter axiom enforces a zero payoff to a nullifying player, i.e., a player
belonging to coalitions with zero worth only. These two axioms play important roles since they
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enable to distinguish the Shapley value (Shapley, 1953) from the equal division value, two values
built on opposite equity principles (see van den Brink, 2007).

There exist few more axioms that rest on the null and nullifying players, or on variants of these
types of players. Three examples are the null player out axiom (Derks and Haller, 1999), the null
player in a productive environment axiom (Casajus and Huettner, 2013) and the nullified solidarity
axiom (Béal et al., 2014). The first one is a relational axiom stating that removing a null player
from a game does not affect the payoff of the remaining players. The second one is a punctual
axiom that specifies to assign a non-negative payoff to a null player if the grand coalition has a
non-negative worth. The third one compares a game before and after a specified player becomes
null, i.e., the worth of a coalition in this new game is the worth of the coalition without the specified
player in the original game. Nullified solidarity is a relational axiom requiring that if the specified
player loses from such a change, then every other player should lose too, albeit the magnitudes of
these losses can vary.

In this article, we call upon the null player in a productive environment axiom and nullified
solidarity, and introduce a variant of the nullifying player axiom called the non-negative player
axiom. This axiom is a punctual axiom that requires to assign a non-negative payoff to a non-
negative player, i.e., a player belonging to coalitions with non-negative worth only. Any nullifying
player is also a non-negative player, but the nullifying player and non-negative player axioms are
not related to each other, i.e., neither axiom implies the other.

The vast category of relational axioms includes as a subclass the axioms of invariance. Such
axioms specify either the same payoff vector or the same payoff for some specific players across
games that are related in certain ways. Besides the null player out axiom, a well-known example
of axiom of invariance is the axiom of marginality (Young, 1985), which requires to attribute the
same payoff to a player in two games where his marginal contributions to coalitions are identical.
Further axioms of invariance are discussed by Béal et al. (2015a,c).

We introduce a new axiom of invariance relying on the idea of bi-partitions, which dates back
to von Neumann and Morgenstern (1953).1 More specifically, our axiom of addition invariance on
bi-partitions states that the chosen payoff vector should not be affected by an identical change in
worth of both a coalition and the complementary coalition. We show that this axiom is equivalent
to self-duality if one restricts to the domain of additive values, which means that it is satisfied by
a lot of well-known values.

We study the consequence of imposing some of the aforementioned axioms in addition to some
classical axioms such as efficiency, additivity, linearity, or the equal treatment axiom. It turns out
that the resulting values or classes of values have all in common to split efficiently the worth achieved
by the grand coalition according to an exogenously given weight vector summing up to unity. We
refer to the weighted division values when the weight vector can contain negative coordinates, and
to the positively weighted division values for the subclass of weighted division values with non-
negative weights. Naturally, the equal division value is the unique weighted division value with
identical weights. All in all, the article contains ten characterizations of such values or classes of
values. To the best of our knowledge, the only similar articles in cooperative game theory are
due to van den Brink (2009) who obtains a characterization of the class of all weighted division
values by imposing the axiom of collusion neutrality (see Haller, 1994) in addition to linearity
and efficiency, and Béal et al. (2015c), who characterize positively weighted division values (resp.

1Bi-partitions are also used by Eisenman (1967) and Evans (1996) in studies on the Shapley value.
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positively weighted surplus division values) by means of efficiency, linearity and the axiom of
invariance from player deletion in presence of a nullifying (resp. dummifying) player.2

The weighted division values constitute an interesting class of values for at least two reasons.
Firstly, although the requirement to treat substitute players equally appears to be natural in many
situations, it is desirable to have the option of treating substitute players differently in order to
reflect exogenous characteristics, such as income or health status. This can be achieved by incorpo-
rating exogenous weights into the construction of a value. Weighted values have been popularized
by Kalai and Samet (1987) who study the weighted Shapley values. In a sense, the weighted divi-
sion values generalize the equal division value as the weighted Shapley values generalize the Shapley
value. Secondly, proportional division methods are very often employed in a lot of applications
such as claim problems, cost allocation problems, insurance, law and so on. We refer to Tijs and
Driessen (1986), Lemaire (1991), Balinski and Young (2001), and Thomson (2003) for rich surveys,
and to Chun (1988), Moulin (1987), and Thomson (2013) for proportional division methods that
rest on exogenously given weights.

Our study exhibits further interesting aspects. From a theoretical point of view, the axiomatic
characterizations of the equal division value always rest on at least one of the classical axioms
of efficiency, the equal treatment axiom, or linearity/additivity. Some of our results avoid to use
some of or all these axioms. As an example, Theorem 2 proves that the equal division value
is characterized by addition invariance on bi-partitions, the nullifying player axiom, and weak
covariance, where this last axiom is a weak version of covariance in the sense that the added
additive game is symmetric. Moreover, two of our characterizations of the positively weighted
division values give insight into the role of the equal treatment axiom in the characterizations of
the equal division value. While the role of the equal treatment axiom is obvious in these two
characterizations of the equal division value, it is more difficult to grasp in the characterization
provided by van den Brink (2007).

The rest of the article is organized as follows. Section 2 presents the basic material about
cooperative games with transferable utilities. Section 3 introduces the axiom of addition invariance
on bi-partitions, and contains all the results in which this axiom is invoked. Section 4 defines the
non-negative player and nullified solidarity axioms, and offers the results mobilizing these axioms.
A comparison with the main result in van den Brink (2007) is provided in Section 5. Section 6
concludes. Finally, the logical independence of the axioms used in each of our characterizations is
demonstrated in the appendix.

2. Basic definitions and notations

Let N = {1, . . . , n}, n ∈ N, be the set of players, which is fixed throughout the article. A
TU-game on N , or simply a game, is given by the coalition function v ∈ V := {f : 2N −→ R |
f(∅) = 0}. Subsets of N are called coalitions. We write i instead of {i} for each singleton coalition.
The size of a coalition S is denoted by its lower-case version s; and v(S) is called the worth of
coalition S.

For all c ∈ R, the symmetric additive game induced by c is denoted by c and is given by
c(S) = s · c for all S ⊆ N . The particular case c = 0 gives rise to the null game 0 given by
0(S) = 0 for all S ⊆ N . For v, w ∈ V and c ∈ R, the coalition functions v + w and c · v are given

2Dummifying players are introduced in Casajus and Huettner (2014).
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by (v + w)(S) = v(S) + w(S) and (c · v)(S) = c · v(S) for all S ⊆ N . For ∅ ( T ⊆ N , the game eT
given by eT (S) = 1 if S = T and eT (S) = 0 for S 6= T is called the standard game induced by
T . Obviously, any v ∈ V admits a unique representation in terms of standard games:

v =
∑
∅(T⊆N

v(T ) · eT . (1)

For ∅ ( T ⊆ N , the game uT given by uT (S) = 1 if S ⊇ T and uT (S) = 0 if S 6⊇ T is
called the unanimity game induced by T . The dual of a game v is the game vD given by
vD(S) = v(N)− v(N \ S) for all S ⊆ N .

Player i ∈ N is null in v ∈ V if v(S) = v(S \i) for all S 3 i. Player i ∈ N is nullifying in v ∈ V
if v(S) = 0 for all S 3 i. Player i ∈ N is non-negative in v ∈ V if v(S) ≥ 0 for all S 3 i. Two
distinct players i, j ∈ N are substitutes in v ∈ V if v(S ∪ i) = v(S ∪ j) for every S ⊆ N \ {i, j}.

A value is a function ϕ that assigns a payoff vector ϕ(v) ∈ Rn to any v ∈ V. We consider
the following values. Let ∆n :=

{
x ∈ Rn |

∑
i∈N xi = 1

}
and ∆n

+ := ∆n ∩ Rn
+. For ω ∈ ∆n, the

ω-weighted division value WDω is given by

WDω
i (v) = ωi · v (N) for all v ∈ V and i ∈ N.

The class of all weighted division values is denoted by W,

W = {ϕ | there is ω ∈ ∆n s.t. ϕ = WDω} ;

the class of positively weighted division values W+ ⊆ W is given by

W+ =
{
ϕ | there is ω ∈ ∆n

+ s.t. ϕ = WDω
}
.

Note that the constants ωi, i ∈ N , in the definitions of the weighted division values are exogenously
given, i.e., they do not depend on the game v under consideration. The equal division value
(ED-value) is the positively weighted division value given by

EDi(v) =
v(N)

n
for all v ∈ V and i ∈ N.

The equal surplus division value (ESD-value) is the value value given by

ESDi(v) = v(i) +
1

n
·
(
v(N)−

∑
j∈N

v(j)

)
for all v ∈ V and i ∈ N.

The Shapley value (Sh-value) (Shapley, 1953) is given by

Shi(v) =
∑

S⊆N :S3i

(n− s)! · (s− 1)!

n!
· (v(S)− v(S \ i)) for all v ∈ V and i ∈ N.

Later on, we will use the following standard axioms for values.

Efficiency. For all v ∈ V,
∑

i∈N ϕi(v) = v(N).

Equal treatment axiom. For all v ∈ V and i, j ⊆ N such that i and j are substitutes in v,
ϕi(v) = ϕj(v).
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Null player axiom. For all v ∈ V and i ∈ V such that i is null in v, ϕi(v) = 0.

Nullifying player axiom. For all v ∈ V and i ∈ N such that i is nullifying in v, ϕi(v) = 0.

Additivity. For all v, w ∈ V, ϕ(v + w) = ϕ(v) + ϕ(w).

Linearity. For all v, w ∈ V and all c ∈ R, ϕ(c · v + w) = c · ϕ(v) + ϕ(w).

Self-duality. For all v ∈ V, ϕ(v) = ϕ(vD).

The Shapley value can be characterized by efficiency, additivity, the null player axiom and the
equal treatment axiom. Replacing the null player axiom by the nullifying player axiom yields a
characterization of the ED-value (see Theorem 3.1 in van den Brink, 2007).

3. Addition invariance on bi-partitions

The use of bi-partitions of N has been suggested by von Neumann and Morgenstern (1953).
Suppose that in a game v ∈ V the grand coalition N splits into two coalitions S and N \ S that
bargain on the surplus v(N) − v(S) − v(N \ S) they can create by cooperating. In a sense, the
worths v(S) and v(N \S) are the bargaining powers of these two bargaining coalitions. The axiom
of addition invariance on bi-partitions indicates that if the worths of S and N \S vary by the same
amount, then this change should not affect the resulting payoff vector. For v ∈ V, ∅ ( S ( N , and
c ∈ R, the game vS,c ∈ V induced by v, S and c is given by

vS,c(T ) :=

{
v(T ) + c, T ∈ {S,N \ S} ,
v(T ), T ∈ 2N \ {S,N \ S} for all T ⊆ N. (2)

Addition invariance on bi-partitions. For all v ∈ V, ∅ ( S ( N , and c ∈ R, ϕ(v) = ϕ(vS,c).

The next result highlights that addition invariance on bi-partitions is equivalent to self-duality
for additive values.

Lemma 1. (a) If a value ϕ satisfies addition invariance on bi-partitions, then ϕ satisfies self-
duality.

(b) If a value ϕ satisfies self-duality and additivity, then ϕ satisfies addition invariance on
bi-partitions.

Proof. (a): Let ϕ be any value that satisfies addition invariance on bi-partitions. Let v ∈ V and
vD its dual, and define the game w ∈ V by w = (v + vD)/2. Now let i ∈ N and any ordering
(S1, . . . , S2n−1−1) of all coalitions containing player i except N . For all p ∈ {1, . . . , 2n−1 − 1},
construct recursively the game vp by vp = (vp−1)Sp,cp , where v0 = v and

cp =
vp−1(N)− vp−1(Sp)− vp−1(N \ Sp)

2
.

At each step p, we have vp(T ) = vp−1(T ) for T 6= Sp or T 6= N \ Sp,

vp(Sp) =
v(Sp) + vD(Sp)

2
, and vp(N \ Sp) =

v(N \ Sp) + vD(N \ Sp)

2
.

As a consequence, we obtain v2n−1−1 = w. Successive applications of addition invariance on bi-
partitions yield ϕ(v) = ϕ(w). Considering vD instead of v, i.e., v0 = vD, and proceeding in the
same fashion, we get ϕ(vD) = ϕ(w). Therefore, ϕ(v) = ϕ(vD), as desired.

5



(b): Let ϕ be any value that satisfies self-duality and additivity. Let v ∈ V, ∅ ( S ( N , and
c ∈ R, and the game vS,c induced by v, S and c. Then, v − vS,c = c · (eS + eN\S). In addition,

for all T ⊆ N , we have c · eDS (T ) = −c if T = N \ S and c · eDS (T ) = 0 if T 6= N \ S. Therefore,
c · eN\S = −(c · eS)D = −c · eDS , and we get (v− vS,c) = c · (eS − eDS ). By additivity and self-duality,

we obtain for all i ∈ N , 0 = ϕi(c · (eS − eDS )) and so 0 = ϕi(c · (eS − eDS )) = ϕi(v − vS,c). Applying
additivity once more, we obtain ϕi(v) = ϕi(vS,c) for all i ∈ N , as desired. �

Lemma 1 (b) implies that the Shapley value as well as any weighted division value satisfy
addition invariance on bi-partitions.

Remark 1. To see why the converse of Lemma 1 (a) fails, let ϕ be the non-additive value given
by

ϕi(v) = (v(N)− v(N \ i)− v(i))2 for all v ∈ V and i ∈ N.

This value satisfies self-duality but not addition invariance on bi-partitions.

By dropping the equal treatment axiom and additivity from Theorem 3.1 in van den Brink (2007),
and adding addition invariance on bi-partitions and linearity, we provide a characterization of the
class of weighted division values.

Theorem 1. A value ϕ satisfies efficiency, linearity, the nullifying player axiom, and addition
invariance on bi-partitions if and only if ϕ ∈ W.

Proof. It is clear that all values ϕ ∈ W satisfies linearity, efficiency, addition invariance on bi-
partitions, and the nullifying player axiom. Reciprocally, let the value ϕ satisfy linearity, efficiency,
addition invariance on bi-partitions, and the nullifying player axiom. Let S ( N , S 6= ∅, and c ∈ R.
Note that vS,c = v + c · (eS + eN\S). By linearity and addition invariance on bi-partitions, ϕ(eS) =
−ϕ(eN\S). Next, let i ∈ N and S 3 i, S 6= N . Since i is nullifying in eN\S , by the nullifying player
axiom, we get ϕi(eN\S) = 0. By addition invariance on bi-partitions, ϕi(eS) = −ϕi(eN\S) = 0.
Thus, ϕi(eS) = 0 for all S 6= N and all i ∈ N . Since {S,N \S}S3i,S 6=N = {S}∅(S(N , linearity and
(1) imply

ϕi(v) = v(N) · ϕi(eN ) for all v ∈ V and i ∈ N.

Set ωi = ϕi(eN ), i ∈ N , and, by efficiency, conclude that ω ∈ ∆N and ϕ = WDω, i.e., ϕ ∈ W. �

The necessity to strengthen additivity used in Theorem 3.1 in van den Brink (2007) by invoking
linearity in Theorem 1 and other results is explained in the conclusion of the article. From Lemma 1
and Theorem 1, we get the following corollary.

Corollary 1. A value ϕ satisfies efficiency, linearity, the nullifying player axiom, and self-duality
if and only if ϕ ∈ W.

Most of the characterizations of the ED-value in the literature use efficiency, the equal treatment
axiom, or additivity. The following axiom enables a characterization of the ED-value without any
of these axioms.

Weak covariance. For all v ∈ V and i ∈ N , and all a, c ∈ R, ϕi(a · v + c) = a · ϕi(v) + c.
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Weak covariance is a weaker version of the classical axiom of covariance3 since in the latter
the added additive game is not required to be symmetric. So, any value satisfying covariance also
satisfies weak covariance, while the converse is obviously not true. Weak covariance is also imposed
by Béal et al. (2015a,b) and van den Brink et al. (2012).

Remark 2. Like any additive value, any value ϕ satisfying weak covariance is an odd function,
i.e., ϕ(−v) = −ϕ(v) for all v ∈ V.

We show that replacing linearity and efficiency in Theorem 1 by weak covariance singles out
the ED-value within the class of all weighted values.

Theorem 2. A value ϕ satisfies the nullifying player axiom, weak covariance, and addition in-
variance on bi-partitions if and only if it is the ED-value.

Proof. One easily checks that the ED-value satisfies the nullifying player axiom, weak covariance
and addition invariance on bi-partitions. To prove the uniqueness part, let ϕ be any value that
satisfies addition invariance on bi-partitions, the nullifying player axiom, and weak covariance. Let
v ∈ V and define the game v0 := v + (−v(N)/n) ·

∑
j∈N uj . Note that v0 is the sum of v and the

symmetric additive game induced by (−v(N)/n), and that v0(N) = 0. Now let i ∈ N , and any
ordering (S1, . . . , S2n−1−1) of all coalitions containing i except N . For all p ∈ {1, . . . , 2n−1 − 1}
construct recursively the game vp as vp = (vp−1)Sp,−v(Sp). As a result, the game v2n−1−1 is such

that v2n−1−1(S) = 0 for all coalitions S containing player i. This means that i is a nullifying
player in this game and so, by the nullifying player axiom, we have ϕi(v

2n−1−1) = 0. By successive
applications of addition invariance on bi-partitions and weak covariance, we get

0 = ϕi(v
2n−1−1) = ϕi(v

0) = ϕi(v)− v(N)

n
,

i.e., ϕi(v) = EDi(v). Because v and i were chosen arbitrarily the proof is complete. �

From Lemma 1 (b) and Theorem 2, we obtain the following corollary, for which the logical
independence of the axioms is preserved as shown in the appendix.

Corollary 2. A value ϕ satisfies the nullifying player axiom, weak covariance, additivity, and
self-duality if and only if it is the ED-value.

4. Null, nullified, and non-negative players

This section invokes three extra axioms, which rest on the notions of the null player, the
nullifying player, and on a variant of these types of players. The first of these axioms is introduced
by Casajus and Huettner (2013) and requires that if the grand coalition enjoys a non-negative
worth, then a null player should not be attributed a negative payoff.

3Covariance is also known as transferable-utility invariance in Hart and Mas-Colell (1989), covariance under
strategic equivalence in Peleg and Sudhölter (2003), zero-independence in Hokari (2005), and invariance in van den
Brink (2007), among other names.
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Null player in a productive environment axiom. For all v ∈ V and i ∈ N such that v(N) ≥ 0
and i is a null player in v, ϕi(v) ≥ 0.

Casajus and Huettner (2013) employ the null player in a productive environment axiom in
order to characterize mixtures between the Shapley value and the ED-value. Dropping addition
invariance on bi-partitions from Theorem 1 and adding the null player in a productive environment
axiom selects the positively weighted division values among the set of all weighted division values.

Theorem 3. A value ϕ satisfies efficiency, linearity, the nullifying player axiom, and the null
player in a productive environment axiom if and only if ϕ ∈ W+.

Proof. It is clear that all values ϕ ∈ W+ satisfies efficiency, linearity, the null player in a productive
environment axiom, and the nullifying player axiom. Reciprocally, let the value ϕ satisfy efficiency,
linearity, the null player in a productive environment axiom, and the nullifying player axiom.
Firstly, the nullifying player axiom implies that ϕi(eS) = 0 for all S 63 i, S 6= N . Secondly, we
show that ϕi(eS) = 0 for all S 3 i, S 6= N . Let i ∈ N and S 3 i with 1 < s < n. Let wi

S ∈ V be
given by wi

S = eS + eS\i. Player i is null in wi
S and wi

S(N) = 0 since s < n. By linearity and the
null player in a productive environment axiom, we get ϕi(eS) ≥ −ϕi(eS\i). Taking −wi

S instead of
wi
S , we have −ϕi(eS) ≥ ϕi(eS\i). Thus, ϕi(eS) = −ϕi(eS\i). In each standard game eS\i, player

i ∈ S ⊆ N is nullifying, so that the nullifying player axiom yields ϕi(eS\i) = 0. It follows that
ϕi(eS) = −ϕi(eS\i) = 0 for all S 3 i such that 1 < s < n. Moreover, since all j ∈ N \ i are
nullifying in ei, we also get ϕj(ei) = 0. Thus, applying efficiency in ei implies that ϕi(ei) = 0 as
well. As a consequence, ϕi(eS) = 0 for all S 6= N and all i ∈ N as claimed, which implies that (1)
can be rewritten as

ϕi(v) = v(N) · ϕi(eN ) for all v ∈ V and i ∈ N.

By the null player in a productive environment axiom, we obtain ϕi(eN + eN\i) ≥ 0. By linearity,
ϕi(eN ) ≥ −ϕi(eN\i), and by the nullifying player axiom, ϕi(eN\i) = 0 so that ϕi(eN ) ≥ 0. Set
ωi = ϕi(eN ) ≥ 0 for all i ∈ N and, by efficiency, conclude that ϕ ∈ W+. �

The second axiom defined in this section is new. It aims at emphasizing that a player is
responsible for the worths of the coalitions he belongs to. The axiom stipulates that if the

worths of all coalitions to which a given player belongs are non-negative, then this player should
get at least a zero payoff.

Non-negative player axiom. For all v ∈ V and i ∈ N such that i is a non-negative player in v,
ϕi(v) ≥ 0.

Similarly to the nullifying player axiom, the non-negative player axiom is based on the worth
of a player’s coalitions instead of the player’s marginal contribution to coalitions. The nullifying
player axiom specifies the nullifying player’s payoff. The requirement in the non-negative player
axiom is somehow weaker in the sense that the non-negative player’s payoff is not completely
specified, allowing two non-negative players to obtain different payoffs. As such, the non-negative
player axiom is related to the nullifying player axiom in a similar way as the null player axiom
is related to the null player in a productive environment axiom. Replacing the null player in a
productive environment axiom and the nullifying player axiom in Theorem 3 by the non-negative
player axiom gives an alternative characterization of the positively weighted division values.

Theorem 4. A value ϕ satisfies efficiency, linearity, and the non-negative player axiom if and
only if ϕ ∈ W+.
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Proof. In a game v ∈ V, a player i ∈ N is non-negative only if v(N) ≥ 0. Thus, any value ϕ ∈ W+

satisfies the non-negative player axiom. For the uniqueness part, consider any value satisfying the
three axioms. For S 6= N , all players are non-negative in eS . By the non-negative player axiom,
ϕi(eS) ≥ 0 for all i ∈ N . By efficiency, it must be that ϕi(eS) = 0 for all i ∈ N . In eN , the
non-negative player axiom also implies ϕi(eN ) ≥ 0 for all i ∈ N . Set ωi = ϕi(eN ) ≥ 0 for all i ∈ N .
Conclude by efficiency, linearity, and (1) that ϕ ∈ W+. �

The third axiom defined in this section incorporates a solidarity principle. Nullified solidarity
(Béal et al., 2014) compares a game before and after a specified player becomes null in the sense that
he now has a null contribution to all coalition he belongs to. The axiom simply requires uniformity
in the direction of the payoff variation for all players in the situations where the considered player
loses from being nullified. As such, nullified solidarity is silent, a priori, on what happens if this
player increases his payoff after being nullified. Formally, for a game v ∈ V and a player i ∈ N ,
the associated game in which i is nullified, denoted by vNi ∈ V, is given by

vNi(S) = v(S \ i) for all S ⊆ N. (3)

Nullified solidarity. For all v ∈ V and i, j ∈ N , ϕi(v) ≥ ϕi(v
Ni) implies ϕj(v) ≥ ϕj(v

Ni).

Nullified solidarity has the same flavor as the axiom of population solidarity proposed by Chun
and Park (2012), which requires that if some players leave a game, then the remaining players
should be affected in the same direction. When a player is nullified, he does not exactly leave the
game, but his presence or absence in a coalition has no impact of the achieved worths. In Chun
and Park (2012), population solidarity belongs to the set of axioms characterizing the ESD-value
on the class of games with variable player sets. Beyond the aforementioned similarities, the two
axioms are not logically related to each other. The ESD-value satisfies population solidarity but
not nullified solidarity. The value which assigns to a player his/her stand alone worth times the
number of players in the game satisfies nullified solidarity but not population solidarity.

The next result shows that nullified solidarity can be used as a substitute to the non-negative
player axiom in Theorem 4 in order to provide another characterization of the positively weighted
division values.

Theorem 5. The value ϕ satisfies efficiency, linearity, and nullified solidarity if and only if ϕ ∈
W+.

Proof. Any value ϕ ∈ W+ satisfies the three axioms. For the uniqueness part, let ϕ be any
value that satisfies the three axioms. For all S ⊆ N and i ∈ S, (eS)Ni = 0. By linearity,
ϕj((eS)Ni) = ϕj(0) = 0 for all j ∈ N . Next, we show that ϕi(eS) ≥ 0 for all S ⊆ N and all i ∈ S.
Assume by contradiction that there are S ⊆ N and i ∈ S such that ϕi(eS) < 0. Consider the
game −eS . By linearity, we get ϕi(−eS) = −ϕi(eS) > 0, and of course (−eS)Ni = (eS)Ni = 0.
Thus, ϕi(−eS) > ϕi((−eS)Ni). By nullified solidarity, this implies that ϕj(−eS) ≥ 0 for all
j ∈ N \ i. Summing on all j ∈ N , we obtain

∑
j∈N ϕj(−eS) > 0, or equivalently

∑
j∈N ϕj(eS) < 0,

a contradiction with the fact that ϕ satisfies efficiency. In other words, the inequality ϕi(eS) ≥ 0
for all S ⊆ N and i ∈ S is true. Then, by nullified solidarity, ϕi(eS) ≥ ϕi((eS)Ni) = 0 implies
ϕj(eS) ≥ ϕj((eS)Ni) = 0 for all j ∈ N . It remains to distinguish two cases. Firstly, suppose that
S 6= N . By efficiency and eS(N) = 0, we get ϕj(eS) = 0 for all j ∈ N . Secondly, suppose that
S = N . Set ωj = ϕj(eN ) ≥ 0 for all j ∈ N . By efficiency,

∑
j∈N ωj = 1. By linearity and (1), the

proof is complete. �
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Replacing linearity in Theorem 5 by weak covariance singles out the ED-value from the set of
positively weighted division values. This result shows that the symmetric treatment imposed by
weak covariance in the added additive game clearly plays a decisive role, even if linearity is not
required. This result echoes Theorem 2 in Béal et al. (2014), in which the ED-value is characterized
by efficiency, nullified solidarity, together with the following two axioms of null game and weak
fairness.

Null game. For all i ∈ N , ϕi(0) = 0.

Weak fairness. For all v, w ∈ V and c ∈ R such that w(S ∪ i) − w(S) = v(S ∪ i) − v(S) + c for
all i ∈ N and S ⊆ N \ i, ϕi(v)− ϕi(w) = ϕj(v)− ϕj(w) for all i, j ∈ N .

Null game is a classical axiom. Weak fairness states that all players should gain or lose equally,
whenever all marginal contributions to coalitions of all players are changed by the same amount.
The principle behind weak fairness originates from the axiom of fairness introduced by van den
Brink (2001). The latter axiom requires that if to a game another game is added in which two
players are substitutes then their payoffs change by the same amount. As demonstrated in the
proof of Theorem 6, the game w is obtained from the game v by adding a symmetric additive game
c. Therefore, Weak fairness is similar to fairness in the sense that to a game we add a (specific)
game in which all players are substitutes whereas only two substitute players are needed in fairness.
Any value satisfying fairness also satisfies weak fairness, while the converse implication does not
hold.

Theorem 6. A value ϕ satisfies efficiency, nullified solidarity, and weak covariance if and only if
it is the ED-value.

Proof. The ED-value clearly satisfies all axioms. Thus, by Theorem 2 in Béal et al. (2014),
it is enough to show that weak covariance implies both null game and weak fairness. The first
implication follows from the definition of weak covariance by setting a = c = 0. For the second
implication, let v, w ∈ V as described in weak fairness. We show that w = v + c, i.e. that
w(S) = v(S) + s · c for all S ⊆ N . We proceed by induction on s. For coalitions of size 1, it is
obvious that w(i) = v(i) + c. So assume that w(S) = v(S) + s · c is true for all S ⊆ N such that
s < k for some k ∈ {2, . . . , n}. Now, take any S ⊆ N such that s = k, and let i ∈ S. By definition
of v and w, and the induction hypothesis, we can write that

w(S) = v(S) + w(S \ i)− v(S \ i) + c⇐⇒ w(S) = v(S) + (s− 1) · c + c⇐⇒ w(S) = v(S) + s · c.

As a consequence, weak covariance can be applied to games v and w to obtain, for all i ∈ N ,
ϕi(w) = ϕi(v) + c. Thus, for all i, j ∈ N , we get ϕi(w) − ϕi(v) = ϕj(w) − ϕj(v) as desired,
completing the proof. �

Note that the combination of null game and weak fairness does not imply weak covariance.
For instance, the value ϕ = 2 · ED satisfies both null game and weak fairness but violates weak
covariance.

5. A comparison with van den Brink (2007)

This section deals with another advantage of some of our results over the characterization of
the ED-value proposed in Theorem 3.1 in van den Brink (2007) . The remark below states that
dropping the equal treatment axiom from Theorem 3.1 in van den Brink (2007) does not ensure that
the resulting values are weighted division values, even if linearity is imposed instead of additivity.
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Remark 3. The set of values satisfying efficiency, additivity or linearity, and the nullifying player
axiom is not contained in W. In order to see this, it suffices to exhibit a value not in W satisfying
linearity, efficiency, and the nullifying player axiom. For all non-empty S ( N , let i(S) ∈ S.
Define the value ϕ as

ϕi(v) = EDi (v) +
∑

S:i(S)=i

v(S)−
∑

S:S\i(S)3i

v(S)

s− 1
for all v ∈ V and i ∈ N. (4)

Since the family (i(S))∅(S⊆N does not depend on v ∈ V, ϕ satisfies linearity. Next, for all non-
empty S 6= N ,

∑
i∈N ϕi(eS) = 0 and

∑
i∈N ϕi(eN ) = 1. Using (1), conclude that ϕ satisfies

efficiency. For all v and all i ∈ N , ϕi(v) depends only on the worth of coalitions containing player
i, so that ϕ obviously satisfies the nullifying player axiom. However, ϕ cannot belong to W.

In a sense, the role of the equal treatment axiom in Theorem 3.1 in van den Brink (2007) is not
only to assign an identical share of the worth of grand coalition but also to neutralize the influence
of all smaller coalitions on the distribution of payoffs. Indeed, we can use two of our results
to provide characterizations of the ED-value in which dropping the equal treatment axiom yields
the set of positively weighted division values. To understand this aspect, consider the following
statement.

Theorem 7. A value ϕ satisfies equal treatment axiom and either
(a) efficiency, additivity, and the non-negative player axiom,
(b) efficiency, additivity, and nullified solidarity,
if and only if it is the ED-value.

Replacing additivity in Theorem 7 by linearity still generates two sets of logically independent
axioms (see the appendix for more details). Proceeding in this fashion and dropping the equal
treatment axiom as we did in Theorem 3.1 in van den Brink (2007) to obtain Remark 3, we re-
cover the characterizations of the positively weighted division values provided by Theorem 4 and
5, respectively. Another view on the results in this section is to remark that Theorem 3.1 in van
den Brink (2007) and Theorem 7 (a) and (b) only differ with respect to one axiom, the nullifying
player axiom, the non-negative player axiom, and nullified solidarity, respectively. In a sense, the
nullifying player axiom is not strong enough to generate only positively weighted division values
without the help of the equal treatment axiom as it is the case with the non-negative player axiom
and nullified solidarity.

Proof. (Theorem 7) We shall only prove the uniqueness parts. For part (a), if additivity replaces
linearity and c · eS , c ∈ R, replaces eS in the proof of Theorem 4, we still can conclude that
ϕi(c · eS) = 0 for all S 6= N , i ∈ N and c ∈ R since ϕ remains an odd function. As a consequence,
the following representation of any additive value

ϕi(v) =
∑
S⊆N

ϕi(v(S) · eS) for all v ∈ V and i ∈ N

can be rewritten as
ϕi(v) = ϕi(v(N) · eN ) for all v ∈ V and i ∈ N.

Finally, efficiency and equal treatment imply ϕi(v(N) · eN ) = v(N)/n, as desired.
Referring to Theorem 5, the proof part (b) is very much the same as for part (a). �
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6. Concluding remarks

We conclude this article with one remark and a recap chart. The reader might wonder whether
linearity can be weakened by using additivity in Theorem 1, 3, 4 and 5 and Corollary 1, especially
because this is exactly what is done in Theorem 7 in a different context. This is not possible.
The reason is that there exist additive functions which are not linear, and that linearity cannot be
derived from the combination of additivity and the other axioms. As an illustration, let us focus on
Theorem 1 in order to show that there are values, outside the set of weighted division values that
satisfy additivity, efficiency, addition invariance on bi-partitions, and the nullifying player axiom.
As suggested in the proof of Theorem 7, replacing linearity by additivity yields that the value under
consideration can be written as

ϕi(v) = ϕi(v(N) · eN ) for all v ∈ V and i ∈ N.

Now, choose a function f : R −→ R, which is additive but not linear (Macho-Stadler et al., 2007,
p. 352, also consider such a function). Using f , define the non-linear value ϕ by

ϕi(v) =

{
EDi(v) + (−1)i · f(v(N)), i ∈ {1, 2},
EDi(v), i ∈ N \ {1, 2} for all v ∈ V and i ∈ N.

Note that f cannot be null everywhere on its domain since otherwise it would be linear. As a
consequence, the value ϕ does not belong to the set of weighted division values even though it
satisfies additivity, efficiency, addition invariance on bi-partitions, and the nullifying player axiom.

The characterizations contained in this article are summarized in the following table, in which a
“+” means that a value satisfies the axiom, in which “−” has the converse meaning, and in which the
“⊕” symbols indicate the axioms used in the corresponding characterization. Also, Theorems and
Corollaries are abbreviated by letters T and C respectively, followed by their identifying number.
T3.1 refers to Theorem 3.1 in van den Brink (2007). Lastly, the ESD-value and Sh-value are added
to the table in order to point out which of our axioms they satisfy.

W W+ ED
ESD Sh

T1 C1 T3 T5 T4 T3.1 T2 C2 T6 T7a T7b

Efficiency ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + ⊕ ⊕ ⊕ + +

Equal treatment − − − − − ⊕ + + + ⊕ ⊕ + +

Nullifying player ⊕ ⊕ ⊕ + + ⊕ ⊕ ⊕ + + + − −

Additivity + + + + + ⊕ + ⊕ + ⊕ ⊕ + +

Linearity ⊕ ⊕ ⊕ ⊕ ⊕ + + + + + + + +

Self-duality + ⊕ + + + + + ⊕ + + + − +

Addition invariance on bi-partitions ⊕ + + + + + ⊕ + + + + − +

Weak covariance − − − − − + ⊕ ⊕ ⊕ + + + +

Null player in a productive environment − − ⊕ + + + + + + + + − +

Non-negative player − − + + ⊕ + + + + ⊕ + − −

Nullified solidarity − − + ⊕ + + + + ⊕ + ⊕ − −

Null game + + + + + + + + + + + + +

Weak fairness − − − − − + + + + + + + +
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AppendixA. Logical independence of the axioms in the characterizations

We focus on non-trivial cases, i.e., if n > 1 or n > 2. In each of the following proofs, we exhibit
a value that satisfies all of the axioms in one of our characterizations except for the one that is
named. Details are provided for the toughest cases.

For Theorem 1:

Not efficiency: the null value;
Not linearity: the value ϕ defined by

ϕi(v) = (v(i)− v(N \ i)) · v(N) and ϕ1(v) =

(
1−

∑
i∈N\1

[v(i)− v(N \ i)]
)
· v(N)

for all v ∈ V and i ∈ N \ {1};
Not the nullifying player axiom: Sh-value;
Not addition invariance on bi-partitions: the value ϕ defined by (4) in Remark 3.

For Corollary 1:

Not efficiency: the null value;
Not linearity: the value ϕ defined by

ϕi(v) = (v(i)− v(N \ i)) · v(N) and ϕ1(v) =

(
1−

∑
i∈N\1

[v(i)− v(N \ i)]
)
· v(N)

for all v ∈ V and i ∈ N \ {1};
Not the nullifying player axiom: Sh-value;
Not self-duality: the value ϕ defined by (4) in Remark 3.

For Theorem 2:

Not the nullifying player axiom: Sh-value;
Not weak covariance: any value ϕ ∈ W+ \ {ED};
Not addition invariance on bi-partitions: the value ϕ defined by ϕi(v) = v(i) for all
v ∈ V and i ∈ N .

For Corollary 2:

Not the nullifying player axiom: Sh-value;
Not weak covariance: any value ϕ ∈ W+ \ {ED};
Not additivity: note that a game v is additive but not symmetric if there exists a weight
vector (c1, . . . , cn) ∈ Rn with not all identical coordinates and such that v =

∑
i∈N ciui.

Let A be the class of all games on N that are additive but not symmetric. Define the
value ϕ by

ϕi (v) =

{
v(i), v ∈ A,
EDi (v) , v ∈ V \A for all v ∈ V and i ∈ N.

Note that for all a, c ∈ R, v ∈ A if and only if (a · v + c) ∈ A, a 6= 0, i.e., the class of
all additive but not symmetric games on N is closed under the “(a · v + c)-operation”,
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provided that a 6= 0. If a = 0 then (a · v + c) = c but in this case, for all i ∈ N ,
EDi(c) = c = c(i). As a consequence, ϕ satisfies weak covariance. For any additive
game, observe that vD = v, so that v ∈ A if and only if vD ∈ A. In particular, we
have v(i) = v(N) − v(N \ i) = vD(i). This implies that ϕ satisfies self-duality. It
is also easy to check that ϕ satisfies the nullifying player axiom. Finally, let v ∈ A,
i.e., v =

∑
j∈N cj · uj with ci 6= cj for some i, j ∈ N . For any given c ∈ R \ {0},

both games c · eN and v − c · eN are not additive, and thus not in A. It follows
that, for all i ∈ N , ϕi(v − c · eN ) = (v(N) − c)/n and ϕi(c · eN ) = c/n. Therefore,
ϕi(v − c · eN ) + ϕi(c · eN ) = v(N)/n for all i ∈ N , i.e., all players get the same payoff
in the sum of the two games. But ϕi(v − c · eN + c · eN ) = ϕi(v) = v(i) = ci for all
i ∈ N which implies that not all players get the same payoff in game v− c · eN + c · eN ,
proving that ϕ does not satisfy additivity;
Not addition invariance on bi-partitions: the value ϕ defined by ϕi(v) = v(i) for all
v ∈ V and i ∈ N .

For Theorem 3:

Not efficiency: the value ϕ defined by ϕi(v) = v(i) for all v ∈ V and all i ∈ N ;
Not linearity: the value ϕ defined by

ϕi (v) =


v(i)2∑

j∈N v(j)2
· v(N) if

∑
j∈N v(j)2 6= 0,

EDi (v) if
∑

j∈N v(j)2 = 0

(A.1)

for all v ∈ V and i ∈ N ;
Not the nullifying player axiom: Sh-value;
Not the null player in a productive environment axiom: any value ϕ ∈ W \W+.

For Theorem 4:

Not efficiency: the null value;
Not linearity: the value given by (A.1);
Not the non-negative player axiom: Sh-value.

For Theorem 5:

Not efficiency: the null value;
Not linearity: let ω ∈ RN be such that

∑
i∈N ωi = 0 and ωi 6= 0 for some i ∈ N .

Construct the value ϕ defined by ϕi(v) = EDi(v) + ωi for all v ∈ V and i ∈ N ;
Not nullified solidarity: Sh-value.

For Theorem 6:

Not efficiency: any value ϕ ∈ W+ \ {ED};
Not weak covariance: for some i ∈ N , the value ϕ(i) defined by ϕ

(i)
j (v) = v(i) for all

v ∈ V and all j ∈ N ;
Not nullified solidarity: Sh-value.
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For Theorem 7 (a):

Not the equal treatment axiom: any value ϕ ∈ W+ \ {ED};
Not efficiency: the null value;
Not additivity: value given by (A.1);
Not the non-negative player axiom: Sh-value.

For Theorem 7 (b):

Not the equal treatment axiom: any value ϕ ∈ W+ \ {ED};
Not efficiency: the null value;
Not additivity: Suppose that n ≥ 3. Let w ∈ V be such that no two distinct players are
substitutes,

w(N) > 0, and w(N \ i) = 0 for all i ∈ N. (A.2)

Let ω ∈ Rn
+ such that

∑
i∈N ωi = 1 and ωi 6= ωj for some i, j ∈ N . Define the value ϕ

by ϕi(w) = WDω
i (w) and ϕi(v) = EDi(v) if v ∈ V \ {w}. Since w does not contain any

pair of substitute players, ϕ satisfies the equal treatment axiom. It is also obvious that ϕ
satisfies efficiency. Regarding nullified solidarity, let v ∈ V\{w}. Since condition (A.2)
implies that w does not contain any null player, we have vNi 6= w for all i ∈ N , so that
nullified solidarity is satisfied when the considered game is v ∈ V\{w}. Now, let us test
nullified solidarity starting with game w. By (A.2), we have wNi(N) = w(N \ i) = 0
for all i ∈ N . Therefore,

ϕi(w) = WDω
i (w) ≥ 0 = EDi(w

Ni) = ϕi(w
Ni),

but also
ϕj(w) = WDω

j (w) ≥ 0 = EDj(w
Nj) = ϕj(w

Ni),

for all j ∈ N \ i, which shows that ϕ satisfies nullified solidarity. Finally, by considering
two games v1 and v2 such that v1 6= 0, v2 6= 0 and v1 + v2 = w, it is easy to see that
ϕ does not satisfies additivity;
Not nullified solidarity: Sh-value.
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Macho-Stadler, I., Pérez-Castrillo, D., Wettstein, D., 2007. Sharing the surplus: An extension of the Shapley value

for environments with externalities. Journal of Economic Theory 135 (1), 339–356.
Moulin, H., 1987. Equal or proportional division of a surplus, and other methods. International Journal of Game

Theory 16, 161–186.
Peleg, B., Sudhölter, P., 2003. Introduction to the Theory of Cooperative Games. Kluwer Academic, Boston.
Shapley, L. S., 1953. A value for n-person games. In: Contribution to the Theory of Games vol. II (H.W. Kuhn and

A.W. Tucker eds). Annals of Mathematics Studies 28. Princeton University Press, Princeton.
Thomson, W., 2003. Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math-

ematical Social Sciences 45, 242–297.
Thomson, W., 2012. On the axiomatics of resource allocation: Interpreting the consistency principle. Economics and

Philosophy 28, 385–421.
Thomson, W., 2013. A characterization of a family of rules for the adjudication of conflicting claims. Games and

Economic Behavior 82, 157–168.
Tijs, S. H., Driessen, T., 1986. Game theory and cost allocation problems. Management Science 32, 1015–1028.
van den Brink, R., 2001. An Axiomatization of the Shapley Value using a Fairness Property. International Journal

of Game Theory 30, 309–319.
van den Brink, R., 2007. Null players or nullifying players: the difference between the Shapley value and equal

division solutions. Journal of Economic Theory 136, 767–775.
van den Brink, R., 2009. Efficiency and collusion neutrality of solutions for cooperative TU-games, tinbergen Dis-

cussion Paper 09/065-1, Tinbergen Institute and Free University, Amsterdam.
van den Brink, R., Chun, Y., Funaki, Y., Park, B., 2012. Consistency, population solidarity, and egalitarian solutions

for TU-games. Tinbergen Discussion Paper 2012-136/II, Tinbergen Institute and VU Amsterdam.
von Neumann, J., Morgenstern, O., 1953. The Theory of Games and Economic Behavior. Princeton University Press,

Princeton.
Young, H. P., 1985. Monotonic solutions of cooperative games. International Journal of Game Theory 14, 65–72.

16


	Introduction
	Basic definitions and notations
	Addition invariance on bi-partitions
	Null, nullified, and non-negative players
	A comparison with b07jet
	Concluding remarks
	Logical independence of the axioms in the characterizations

