
Towards an evolutionary cooperative game
theory

Andre Casajus and Harald Wiese, University of Leipzig
Postfach 920, 04009 Leipzig, Germany,

tel.: 49 341 97 33 771,
fax: 49 341 97 33 779

e-mail: wiese@wifa.uni-leipzig.de

February 2012

Abstract

The idea behind evolutionary game theory is to interpret payo¤s as
�tness. Non-cooperative game theory has seen many interesting results and
applications. The aim of this paper is to introduce a replicator-dynamics
version for cooperative game theory. We generate payo¤s, or �tness values,
by way of the Mertens (1980) value which is a close cousin of the continuous
Shapley value introduced by Aumann & Shapley (1974). We already present
some preliminary results for the resulting replicator dynamics (this part is
work in progress). We close with some (well-founded) conjectures on the
evolutionary dynamics for particular TU games.
Keywords: Mertens value, replicator dynamics, asymptotic stability,

apex game
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1. Introduction

Evolutionary models of various forms have been part and parcel of economics for
a long time (see, for example, the articles collected by Witt 1993). A speci�c class
of models has been developed within game theory. In usual parlance, evolution-
ary game theory (see, for example, Weibull (1995) or Samuelson (1997)) means



evolutionary theory applied to non-cooperative games. The aim of this paper is
to develop an evolutionary cooperative game theory where we concentrate on the
transferable-utility case. Apparently, ideas in this direction have been around for
some time. Nasar (2002, p. xxiv) reports that John Nash, picking up his old
interest in game theory, �received a grant from the National Science Foundation
to develop a new �evolutionary�solution concept for cooperative games�.
Cooperative game theory rests on two pillars. First, the economic (or political

or sociological ...) situation is described by a player set N and a coalition function
v : 2N ! ;. Subsets of N are called coalitions, with N being the grand coalition.
For every coalitionK � N , v (K) is its worth that stands for the possibilities open
to that coalition. For T 2 2Nn f;g ; the game uT is called the unanimity game; it
is de�ned by uT (K) = 1 if T � K and uT (K) = 0 otherwise. The players from T
are often called the productive players while the other players are unproductive.
As a second example, consider the apex game h for N = f1; :::; 4g : It is de�ned
by

h (K) =

8<:
1; 1 2 K and Kn f1g 6= ;
1; K = Nn f1g
0; otherwise

Thus, the apex player 1 needs one additional player to produce the worth 1: This
worth can also be created by the coalition of the three less important players 2;
3; and 4.
Cooperative game theory�s second pillar are solution concepts, the most fa-

mous being the core and the Shapley�s (1953) value. From the point of view of
applicability, the Shapley value has the advantage of producing unique payo¤s for
the n players. Thus, the coalition function is the input into a solution concept
and the payo¤ vector the output. For the above apex game, the Shapley payo¤
vector is

Sh (N; v) =

�
1

2
;
1

6
;
1

6
;
1

6

�
:

Aumann &Myerson (1988) interpret the apex game as a weighted voting game
and try to predict coalition formation. They present a hybrid noncooperative-
cooperative model which, following Brandenburger & Stuart (2007) (who use the
core rather than the Shapley value or the weighted XP Shapley value), can also
be called a biform games. In that model, players (political parties) sequentially
decide on forming links with other players. Depending on the links, the players
obtain the Myerson (1977) value which is an adaptation of the Shapley value for
networks. Aumann & Myerson (1988) �nd that backward induction applied to
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the link game leads to the coalition f2; 3; 4g where the three little players join to
share the worth of 1:
In order to address problems of coalition formation (and for other purposes

as well), we take another approach by developping evolutionary cooperative game
theory. Imbedding games like the apex game into an evolutionary setting, we
interpret the payo¤s as �tness. A player�s success feeds into his proliferation. In
order to model reproductive di¤erences between players, we distinguish between
players (like the four players in the apex game) and agents who take up the
roles (or types) of these n players. If a role is particularly fruitful (in producing
relatively high payo¤s for the agents assuming that role), the relative number of
these agents increases.
While the number of players is a natural number, we deal with a continuum

of agents for each player. Therefore, we need an extended coalition function that
is capable of dealing with non-integer players (agents). The Lovasz extension �v
or the multi-linear (Owen) extension vMLE are suitable candidates. We prefer the
Lovasz extension to the multi-linear extension. If players (or agents) work together
(in the framework of a unanimity or an apex game) and if the size of the agents
is below 1; the multilinear extension has a probabilistic interpretation (as noted
by Owen 1972, p. 64) � the players work together only if their time schedules
happen to coincide. For example, two productive players in the unanimity game
uf1;2g with s =

�
1
2
; 1
3

�
can produce 1

2
� 1
3
, only. It seems to us that (by appropriate

coordination), the two agents should be able to produce the minimum of these two
�gures, 1

3
,. which is exactly what the Lovasz extension does. Also, consider s =

(2; 3). The multi-linear extension yields 2 � 3 = 6 whereas the minimum extension
leads to 2: Also, an extension�s worth may turn out to be negative even if the
underlying coalition function itself is positive. In fact, we �nd hMLE (2; 1; 3; 4) =
�10: The use of the Lovasz extension has important repercussions for our model.
In unanimity games, the productive players with minimal agent sets get all the
payo¤.
Extensions of coalition functions cannot be an input for the (standard) Shapley

value. While the Lovasz extension �v is continuous, it is not di¤erentiable in
general. Hence, the diagonal formula introduced by Aumann & Shapley (1974)
is not applicable. Fortunately, however, we can use the Mertens (1980) value as
Haimanko (2001) has shown for a formally similar problem (of cost division). The
Mertens value thus yields the payo¤ information understood as �tness and we
can then de�ne the replicator dynamics. Whenever an agent receives an above-
average payo¤, the population share of his player will increase �a standard result
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Figure 1.1: The apex player teams up with player 4

in replicator-dynamics models (for example Weibull 1995, chapter 3). We strive to
derive the di¤erential equation of the resulting replicator dynamics in this paper.
The reader is invited to consider two �gures. They report the results of a

discrete-step analogue of the replicator dynamics�di¤erential equation. The initial
population share vector x (0) =

�
2
10
; 1
10
; 3
10
; 4
10

�
is used in �g. 1.1. The apex player�s

initial share is at least as high as the share of any of the weak players. In that
case, the apex player teams up with the weak player who has the largest initial
share. In the beginning, only player 1�s agent set grows. As soon as the sizes of
player 1�s agent set and player 4�s agent set equal, both agent sets grow while the
agent sets of players 2 and 3 tend towards zero. Thus, the asymptotically stable
population share vector is x̂ =

�
1
2
; 0; 0; 1

2

�
.

Fig. 1.2 starts with the population share vector
�
1
10
; 2
10
; 3
10
; 4
10

�
, i.e., the apex

player�s initial share is lower than the shares of all the weak players. In this case,
the apex player�s share tends to zero and the asymptotically stable population
share vector is x̂ =

�
0; 1

3
; 1
3
; 1
3

�
: This second example closely resembles the results

found by Aumann & Myerson (1988).
In terms of interpretation, evolutionary noncooperative game theory (ENGT)

di¤ers from evolutionary cooperative game theory (ECGT). ENGT builds on the
idea that two players are drawn at random from a large population. They are
programmed to play a certain (mixed) strategy and the strategy that does better
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Figure 1.2: The three unimportant players trump the apex player

than other strategies grows faster. The most basic model of ENGT builds on (a)
�pairwise contests�and (b) a monomorphic population playing a symmetric game.
Of course, more advanced ENGT models also deal with polymorphic playing-the-
�eld situations.
In contrast, the �simple�ECGT as presented here naturally belongs to (a) the

�playing the �eld�and (b) the polymorphic variety. (a) just results from the way
the Mertens value is calculated and interpreted �an agent�s payo¤ depends on
the set-up of the economy as a whole. (b) is the natural out�ow from di¤erent
players�roles.
We suggest to reserve the term ECGT for the non-atomic (or at least many-

agents) setup. It is the agents whose shares change. In contrast, one might
envision a model where the players themselves grow or shrink. A suitable example
is provided by �rms. Depending on their pro�ts they will grow in an organic
fashion (rather than grow by mergers and acquisitions). This is not the kind of
model we have in mind in this paper.
Our work is related to the concept of �dynamic cooperative games�introduced

by Filar & Petrosjan (2000). Their idea is to de�ne a sequence of games (in discrete
or in continuous time) so that one TU game is determined by the previous one
and by the payo¤s achieved under some solution concept. The players (no agents
involved) in that paper obtain the sum of payo¤s for this sequence of coalition
functions. The authors deal with the problem of whether these payo¤s obey some
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consistency criterion.
When discussion the apex game, we argue that ECGT migth be considered a

contribution to the vast �eld of coalition formation. Alternatively, while a major
application of, and motivation for, ENGT is equilibrium selection (see the titel of
the book by Samuelson 1997), ECGT focuses on the evolutionary pressure against
players (rather than strategy combinations). In particular, we derive the following
results: 1. Dominated players (with lower marginal contributions) may survive in
the long run. 2. For simple games, asymptotically stable population share vectors
involve minimal winning coalitions.
The paper is organized as follows. In the following section, we provide the

basics of TU games together with a de�nition of the Shapley value. Section
3 introduces vector measure games for Lovasz extensions. We are then set to
derive payo¤s by way of the Mertens value in section 4. We already present
some preliminary results for the resulting replicator dynamics (this part is work
in progress) in section 5. We then comment on some stability results in the section
6 before concluding the paper with section 7.

2. Basic de�nitions and notation

2.1. Payo¤ vectors, population-size vectors

For a non-empty and �nite (player) set N , let

RN+ : =
�
x 2 RN j8i 2 N : xi � 0

	
;

RN++ : =
�
x 2 RN j8i 2 N : xi > 0

	
;

�N
+ : =

�
x 2 RN+ j

P
i2N xi = 1

	
;

�N
++ : = �N

+ \ RN++:

2.2. Finite TU games

Let U be a su¢ ciently large in�nite set, the universe of players; N (U) denotes the
set of non-empty and �nite set of subsets of U . A (TU) game on U is a pair
(N; v) consisting of a set of players N 2 N (U) and a coalition function v 2
V (N) :=

�
f : 2N ! Rjf (;) = 0

	
. Subsets of N are called coalitions, and v (K)

is called the worth of coalition K.
For v; w 2 V (N) ; � 2 R; the coalition functions v + w 2 V (N) and � � v 2

V (N) are given by (v + w) (K) = v (K)+w (K) and (� � v) (K) = � �v (K) for all

6



K � N: For K � N and v 2 V (N) ; vjK 2 V (K) denotes the restriction of v to
2K : The null game on N is denoted (N;0) ; 0 2 V (N) ; where 0 (K) = 0 for all
K � N: For T 2 2Nn f;g ; the game (N; uT ), uT (K) = 1 if T � K and uT (K) = 0
otherwise, is called a unanimity game; the game (N; eT ), eT (K) = 1 if T = K
and eT (K) = 0 otherwise, is called a standard game. A game (N; v) is called
simple i¤ v (K) 2 f0; 1g for all K � N ; it is called superadditive i¤ v (S [ T )
� v (S) + v (T ) for all S; T � N; S \ T = ;: Let Vsa (N) and Vsi (N) denote the
sets of superadditive and of simple coalition functions on N , respectively: Any v 2
V (N) can be uniquely represented by unanimity games,

v =
X

T�N :T 6=;

�T (v) � uT ; �T (v) :=
X

S�T :S 6=;

(�1)jT j�jSj � v (S) : (2.1)

Player i 2 N is called a dummy player in (N; v) i¤ v (K [ fig) � v (K) =
v (fig) for allK � Nn fig ; if in addition v (fig) = 0; then i is called a null player;
players i; j 2 N are called symmetric in (N; v) if v (K [ fig) = v (K [ fjg) for
all K � Nn fi; jg.
A value on N is an operator ' that assigns a payo¤ vector ' (N; v) 2 RN

to any game (N; v) : An order of a set N is a bijection � : N ! f1; : : : ; jN jg
with the interpretation that i is the � (i)th player in �. The set of these orders
is denoted by R (N) : The set of players weakly preceding i in � is denoted by
Ki (�) = fj 2 N : � (j) � � (i)g : For i =2 K, the marginal contribution of i at
K is de�ned by MCvi (K) := v (K[fig) � v (K) : The marginal contribution
of i under � is denoted MCvi (�) := MC

v
i (Ki (�) n fig) : The Shapley value on

V (N), Sh, is given by

Shi (N; v) :=
1

jR (N)j
X

�2R(N)

MCvi (�) ; i 2 N; v 2 V (N) : (2.2)

3. Vector measure games

3.1. De�nition

Let I be a set and C a subset of 2I such that (I; C) is isomorphic to ([0; 1] ;B) ;
where B stands for the Borel subsets of [0; 1] : A game on (I; C) is a mapping
v : C ! R such that v (;) = 0: A game is �nitely additive if v (S [ T ) =
v (S) [ v (T ) for all S; T 2 C; S \ T = ;: A value ' on (I; C) is linear operator
that assigns to any game v a �nitely additive game 'v and that is symmetric,
positive, and e¢ cient (see Neyman 2002, Section 3).
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Figure 3.1: From a TU game to a vector measure game

A game v on (I; C) is called a vector measure game if there is a triple�
N; (�i)i2N ; f

�
;

where N is a non-empty and �nite set N; �i; i 2 N is non-atomic on (I; C) ; and
f is a function f : RN+ ! R such that

v := f � �;

where � is the vector measure � : C ! RN+ given by

� (C) = (�i (C))i2N ; C 2 C:

Abusing notation, we the write v =
�
N; (�i)i2N ; f

�
:

Consider �g. 3.1. So far, we have presented TU games and vector measure
games in general. The next two subsections are devoted to the Lovasz extension
and the derived vector measure game while section 4 deals with the solution
concepts.
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3.2. The Lovasz extension

The Lovasz (1983) extension (N; �v) ; �v : RN+ ! R of a TU game (N; �v) is given by

�v (s) :=
X

T�N;T 6=;

�T (v) �minT (s) ; s 2 RN+ ; (3.1)

where

minK : RN ! R; s 7! minK (s) := min
i2K

si; K � N;K 6= ;: (3.2)

For unanimity games this implies

�uT (s) = minT (s) ; T � N; T 6= ;; s 2 RN+ : (3.3)

By (3.1) and (3.2), the Lovasz extension is linear in the coalition function,
�v + �w = � � �v + � � �w for all v; w 2 V (N) ; and �; � 2 R; and non-negatively
homogenous in s, �v (� � s) = ���v (s) for all v and � 2 R+ (see Lovasz 1983, Algaba,
Bilbao, Fernandez & Jimenez 2004).
Note that while themin-operator is continuous, it is not partially di¤erentiable.

Of course, this peculiarity is passed on to �v:

3.3. Derived vector measure game

From (N; v) ; v 2 V (N) and s 2 RN+ ; we construct a vector measure game ~vs =�
N; (�si )i2N ; �v

�
on (I; C) (isomorphic to ([0; 1] ;B)) as follows: There is a collection

(Ai)i2N , Ai 2 C with the following properties:
D1 �si ; i 2 N is a measure on (I; C) :
D2 For all i; j 2 N; i 6= j; we have Ai \ Aj = ;:
D3 �si (C) = �

s
i (Ai \ C) ; i 2 N , C 2 C:

D4 �si (Ai) = si; i 2 N .

Remark 1. The intendend interpretation is the following: The set I contains
the agents of the players in N: Since we do not require the collection (Ai)i2N to
be exhaustive, I may contain additional agents, which are, however, completely
unproductive. The set C contains all coalitions under consideration. For all i 2
N; the coalition Ai contains all agents of player i and no agents of the players
j 2 Nn fig : The measure �si ; i 2 N assigns to any coalition C 2 C the number of
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agents of player i contained in it: Overall, there are �si (I) = �si (Ai) = si agents
of player i which only inhabit Ai: The vector measure � assigns to any C 2 C
the vector �s (C) of �population sizes�of the players from N in C: Finally, the
Lovasz extension �v determines the worth generated by any C 2 C based on these
�population sizes�.

Remark 2. It is easy to see that such a vector measure game ~vs =
�
N; (�si )i2N ; �v

�
on some (I; C) always exists. Let (I; C) = ([0; 1] ;B) : Consider a injection � : N !
f1; : : : jN jg and let Ai :=

�
�(i)�1
jN j ;

�(i)
jN j

�
and �si be given by the density function

�si : [0; 1]! R;

�si (x) :=

�
jN j � si; x 2 Ai;
0; x 2 InAi;

x 2 [0; 1] ; i 2 N;

and the Lebesgue measure on [0; 1].

Remark 3. Given (N; v) and s 2 RN+ ; there is a lot of arbitrariness in choosing
(I; C) and (Ai; �si )i2N as above. Ultimately, we are interested in the payo¤s of the
coalitions Ai; i 2 N only. Under the value applied, as we will see later on, these
payo¤s are not sensitive to the unspeci�ed details.

4. Payo¤s for the vector measure game

Now, we determine the payo¤s ' (Ai) ; i 2 N for the vector measure games ~vs =�
N; (�si )i2N ; �v

�
; s 2 RN+ ; on (I; C) :

Note that for vector measure games v =
�
N; (�i)i2N ; f

�
on (I; C), where f

is continuously di¤erentiable and �i (I) > 0; i 2 N , there is a convenient way
to determine the value, the diagonal formula by Aumann & Shapley (1974,
Theorem B), also see Neyman (2002, pp. 2141). Alas, since the Lovasz extension
�v is not di¤erentiable in general, we build on this approach.
Fortunately, however, the games ~vs; s 2 RN+ belong to a class of games on

(I; C) on which the Mertens value (Mertens 1980) is the unique value (Neyman,
2002, Section 8; Haimanko, 2001). In particular, Haimanko deals with vector
measure games v =

�
N; (�i)i2N ; f

�
; with following properties:

H1 �i; i 2 N is a probability measure.

H2 The probability measures �i; i 2 N are mutually singular, i.e., they have
pairwise di¤erent carriers.
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H3 The function f is continuous and piecewise linear.
It is easy to see that ~vs =

�
N; (�si )i2N ; �v

�
can be written to match this speci-

�cation, i.e.,
~vs =

�
N; (�si )i2N ; �v

�
=
�
N; (�̂si )i2N ; �v

s
�
: (4.1)

For i 2 N; si > 0; the probability measure �i is given by

�̂si (C) =
�si (C)

si
; (4.2)

for i 2 N; si = 0; choose any probability measure �̂si such that �̂si (Ai) = 1 and
�̂si (C) = �̂

s
i (Ai \ C) ; i 2 N , C 2 C. Further, let

hs : RN+ ! RN+ ; (xi)i2N 7! hs (x) = (si � xi)i2N ; x 2 RN+ (4.3)

and set
�vs = �v � hs: (4.4)

By (4.2), D1, and D4,
�
N; (�i)i2N ; �v

s
�
meets H1. By (4.2), D1, and D4,�

N; (�i)i2N ; �v
s
�
obeys H2. To see, H3, set

RN+ (�) : = RN+ \ RN (�) ; (4.5)

RN (�) : =
�
x 2 RN j8i; j 2 N : � (i) < � (j) () xi > xj

	
; � 2 R (N) :

By (3.1), (3.2), and (4.5), �v is continuous on RN+ and linear on the closure of
RN+ (�) ; � 2 R (N) : By (4.3) and (4.4), these properties are pased on from �v to
�vs:

RN++ (�) : = RN++ \ RN+ (�)
�N+ (�) : = �N+ \ RN+ (�)
�N++ (�) : = �N+ \ RN++ (�)
RN+ (R) : =

[
�2R(N)

RN+ (�)

s 2 RN+ (R)
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The Mertens value 'M on the class of vector measure games
�
N; (�i)i2N ; f

�
obeying H1�H3 is given by the following diagonal formula (Neyman 2002, pp.
2150)1:

'M (f � �) (C) = EY
Z 1

0

@f (t � 1N ;Y ;� (C)) dt; C 2 C; (4.6)

where 1N 2 RN ; (1N)i = 1; i 2 N; Y = (Yi)i2N is a vector of independent random
varibles, each with the standard Cauchy distribution and

@f (x; y; z) := lim
"#0

fy+"z (x)� fy (x)
" � kzk ; x 2 (0; 1)N ; y; z 2 RN ; (4.7)

where fy (x) ; x 2 (0; 1)N ; y 2 RN is the directional derivative of f at x in the
direction of y: Note that for each �xed x, @f (x; y; z) is the directional derivative
of the function y 7! fy (x) at y in the direction of z 2 RN :2
Recall that the density d of a random variable Y on R with the standard

Cauchy distribution is

d (y) =
1

� (1 + y2)
; x 2 R.

Hence, the density d of a vector Y = (Yi)i2N of independent random variables,
each with standard Cauchy distribution, on RN is

d (y) =
Y
i2N

1

� (1 + y2i )
; y 2 RN : (4.8)

Since both the Lovasz extention and Mertens value are linear in the coalition
function, respectively, we have

'M (�v � �s) (Ai) = 'M (�v
s � �̂s) (Ai)

=
X

T�N;T 6=;

�T (v) � 'M (�usT � �̂s) (Ai) (4.9)

for all i 2 N and v 2 V (N) :
1Note that there is a misprint on Neyman (2002, p. 2150)� the obvoius expectation operator

EY is missing.
2Since z is not normalized to kzk = 1; the nominator of the above formula should be " � kzk

and not just z as on Neyman (2002, p. 2150).
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Fix i 2 N and T � N; T 6= ;: In order to determine 'M (�usT � �̂s) (Ai) ; we �rst
calculate the expression

@�usT (t � 1N ; y; �̂s (Ai)) ; t 2 [0; 1] ; y 2 RNn f0Ng :

By D4 and (4.2), we have �̂s (Ai) = 1i 2 RN ; (1i)i = 1, (1i)j = 0 for j 2 Nn fjg :
Further by (4.7),

@�usT (t1N ; y; �̂
s (Ai))

= lim
"#0

(�usT )y+"�1i (t � 1N)� (�u
s
T )y (t � 1N)

" � k1ik

= lim
"#0

lim�#0

�
�usT (t � 1N + � � (y + " � 1i))� �usT (t � 1N)

� � ky + " � 1ik
� : : :

"

: : :
�usT (t � 1N + � � y)� �usT (t � 1N)

� � kyk

�
; (4.10)

where k�k denotes the Euklidean norm operator.
For K � N; K 6= ;; set argminK (x) := fj 2 Kjxj = minK (x)g ; x 2 RN . We

distinguish some cases.
Case (i): We consider i 2 Nn argminT (s) : By (3.2), (3.3), and (4.4), we have

�usT (t � 1N) = t �minT (s) : (4.11)

Further, for su¢ ciently small " and �;

�usT (t � 1N + � � (y + " � 1i)) = �usT (t � 1N + � � y) = minT (s)�
�
t+ � �minargminT (s) (y)

�
:

Hence, (4.10) becomes

@�usT (t1N ; y; �̂
s (Ai)) = minT (s) �minargminT (s) (y) � lim"#0

�
1

ky + " � 1ik
� 1

kyk

�
"

= � yi

kyk kyk2
�minT (s) �minargminT (s) (y) : (4.12)

For y 2 RN ; let y(�i) 2 RN be given by y(�i)i = �yi and y(�i)j = �yj for
j 2 Nn fig : By (4.12), we have

@�usT
�
t1N ; y

(�i); �̂s (Ai)
�
= �@�usT (t1N ; y; �̂s (Ai)) : (4.13)
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By (4.8), d
�
y(�i)

�
= d (y) ; y 2 RN : Hence, (4.13), (4.6), and (4.1) already

entail
'M (�uT � �s) (Ai) = 0: (4.14)

Case (ii): i 2 argminT (s) : Since Y is non-atomic, we are allowed to restrict
attention to

y 2 RN (R) =
[

�2R(N)

RN (�) :

Case (iia): i 6= argminargminT (s) (y) :
The arguments of Case (i) apply up to (4.12), i.e.,

@�usT (t1N ; y; �̂
s (Ai)) = �

yi

kyk kyk2
�minT (s) �minargminT (s) (y) (4.15)

Case (iib): i = argminargminT (s) (y) : For su¢ ciently small " and �;

�usT (t � 1N + � � (y + " � 1i)) = minT (s) �
�
t+ � �

�
minargminT (s) (y) + "

��
�usT (t � 1N + � � y) = minT (s) �

�
t+ � �minargminT (s) (y)

�
:

Hence together with (4.11), (4.10) becomes

@�usT (t1N ; y; �̂
s (Ai)) = minT (s) � lim

"#0

yi + "

ky + " � 1ik
� yi
kyk

"

= minT (s) �
1

kyk
kyk2 � y2i
kyk2

: (4.16)

For y 2 RN ; i; j 2 argminT (s) ; i 6= j; let y(i$j) 2 RN be given by y
(i$j)
i = yj;

y
(i$j)
j = yi and y

(i$j)
j = �j for j 2 Nn fi; jg : By (4.15) and (4.16), we have

@�usT
�
t1N ; y

(i$j); �̂s (Ai)
�
= @�usT (t1N ; y; �̂

s (Aj)) : (4.17)

Further by (4.8), d
�
y(i$j)

�
= d (y) ; y 2 RN : Hence, (4.17), (4.6), and (4.1) already

entail
'M (�uT � �s) (Ai) = 'M (�v � �s) (Aj) : (4.18)

Now, consider �A := In
[

i2N
Ai: By D3 and (4.2), �̂s

�
�A
�
= 0N 2 RN : Hence

by (4.6), (4.7), and (4.1),

'M (�uT � �s)
�
�A
�
= 0: (4.19)
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By (3.3), D3, and D4, the e¢ cency of the Mertens value entails

�uT � �s (I) = minT (s) :

Hence, (4.14), (4.18), and (4.19) entail

'M (�uT � �s) (Ai) =
(
0; i 2 Nn argminT (s) ;

si
jargminT (s)j

; i 2 argminT (s) ; i 2 N: (4.20)

Further, (4.9) gives

'M (�v � �s) (Ai) = si �
X

T�N :i2argminT (s)

�T (v)

jargminT (s)j
: (4.21)

For i 2 N; s 2 RN+ (�) ; � 2 R (N) ; by (4.5) and (4.9), (4.21)

'M (�v � �s) (Ai) =
X

T�Ki(�);i2T

minT (s)��T (v) = si�
X

T�Ki(�);i2T

�T (v) = si�MCvi (�) :

(4.22)
The importance of the afore mentioned formula lies in the fact that all what
matters in the following are the payo¤s for

s 2 RN+ (R) :=
[

�2R(N)

RN+ (�) :

For the sake of completeness, we povide the a formula for general s 2 RN+ : We
have

'M (�v � �s) (Ai) =
1

jR (N; s)j
X

�2R(N;s)

si �MCvi (�) ; i 2 N; s 2 RN+ ; (4.23)

where

R (N; s) = f� 2 R (N) j8i; j 2 N : � (i) > � (j) () si < sjg ; s 2 RN+ :
(4.24)

First note that (4.21) is special case of (4.23) because R (N; s) = � for s 2 RN+ (�).
Since 'M is linear in v, it su¢ ces to show (4.23) for uT ; T � N; N 6= ;: For
� 2 R (N; uT ) ; the marginal contributions MCuTi (�) are either 0 or 1: By (4.24),
the marginal contribution MCuTi (�) is 1 i¤ i is the last player from argminT (s) :

15



Since by (4.24) the probability being the last one from argminT (s) in � is the
same for all i 2 argminT (s) ; we have

1

jR (N; s)j
X

�2R(N;s)

si �MCvi (�) =
si

jargminT (s)j
= 'M (�uT � �s) (Ai) ;

which proves the claim.

5. Replicator dynamics derived from TU games

5.1. Basic idea

The basic idea of this section is to interpret the payo¤s

f vi (s) := 'M (�v � �s) (Ai) = si �
X

T�N :i2argminT (s)

�T (v)

jargminT (s)j
; (5.1)

i 2 N; v 2 V (N) ; s 2 RN+ as �tness of the populations of the players�agents
which determine the velocities of their growth in time. Let

f v : RN+ ! RN ; s 7! (f vi (s))i2N ; s 2 RN+ :

For some �xed v 2 V (N) ; we obtain the following replicator dynamics for the
absolut population sizes given by the ordinary di¤erential equation

_s =
ds

dt
= f v (s) ; s 2 RN+ : (5.2)

For population shares, we obtain

_x =
dx

dt
= 'v (x) ; x 2 �N

+ ; (5.3)

where 'v : �N
+ ! RN ; x 7! ('vi (x))i2N is given by

'vi (x) := f
v
i (x)� xi

X
j2N

f vj (x) ; i 2 N; x 2 �N
+ : (5.4)

One easily checks that (5.3) is a replicator dynamic.
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5.2. Solutions to the di¤erential equations

By (5.1) and (5.4), the right-hand sides of the ODE (5.2) and (5.3) are discountin-
uous in general. Hence, the standard results on ODE (see e.g. Weibull 1995, Sec-
tion 6) do not apply. Instead, we employ the Filippov (1988) approach later on
(see Section 5.3)
While the ODE (5.2) and (5.3) are discountinuous in general, it is immedi-

ate, again from (5.1) and (5.4), that they are Lipschitz continuous on certain
subdomains of RN+ or �N

+ ; respectively, on RN+ (�) and

�N
+ (�) := �

N
+ \ RN (�) ; � 2 R (N) :

Hence, Weibull (1995, Theorem 6.1) guarantees the existence of unique (local)
solutions Weibull (1995, De�nition 6.1) of the ODE (5.2) and (5.3) on

RN++ (�) := RN++ \ RN (�) and �N
++ (�) := �

N
++ \ RN (�)

through any point s0 2 RN++ (�) and x0 2 �N
++ (�) ; respectively. These solutions

are either global or reach the boundary of the domain in �nite time.
In particular, the right-hand side of the ODE (5.2) is not only linear, but has

a rather simple structure. By (4.22), it is just the inner product of the population
size vector with the vector of marginal contributions. One easily checks that the
unique local solution of the ODE (5.2) on RN++ (�) through s0 2 RN++ (�) at t = 0
is given by

si
�
t; s0

�
= s0i � et�MCvi (�); i 2 N; t 2 T; (5.5)

where T � R is an open interval containing 0: Hence, the unique local solution of
the ODE (5.3) on �N

++ (�) through x
0 2 �N

++ (�) at t = 0 is given by

xi
�
t; x0

�
=

x0i � et�MCvi (�)P
j2N x

0
j � et�MCvj (�)

; i 2 N; t 2 T: (5.6)

Using (5.5 or (5.6), one can dertermine which domain of (potential) dicon-
tinuity is reached when one starts at s0 2 RN++ (�) or x0 2 �N

++ (�). An or-
dered partition (P ; �) on N is a partition P 2 P (N) together with a bijection
� : P ! f1; : : : ; jPjg : Let Po (N) denote the set of all ordered partitions of N:
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For (P ; �) 2 Po (N) ; set
RN (P ; �) :=

�
x 2 RN j8i; j 2 N : xi � xj () � (P (i)) � � (P (j))

	
;

RN+ (P ; �) := RN (P ; �) \ RN+ ;
RN++ (P ; �) : = RN (P ; �) \ RN++;
�N
+ (P ; �) = RN (P ; �) \�N

+ ;

�N
++ (P ; �) = RN (P ; �) \�N

++:

For i; j 2 N; i 6= j; s0 2 RN++; v 2 V (N) ; and � 2 R (N) ; set

t
�
i; j; v; s0; �

�
=

8>><>>:
+1; MCvi (�) =MC

v
j (�)

_
��
MCvi (�)�MCvj (�)

� �
s0i � s0j

�
> 0

�
;

�
�
ln s0i � ln s0j

�
MCvi (�)�MCvj (�)

;
�
MCvi (�)�MCvj (�)

� �
s0i � s0j

�
< 0:

Further, for s0 2 RN++; v 2 V (N) ; and � 2 R (N) ; let
t�
�
v; s0; �

�
= min

i;j2N :i6=j
t
�
i; j; v; s0; �

�
:

By (5.5 or (5.6), t� (v; s0; �) is the time when the forward solution reaches the
boundary of RN++ (�) or �N

++ (�) ; respectively. Note that if t
� (v; s0; �) = +1;

then the trajectory stays in �N
++ (�) for t � 0:

For s0 2 RN++; v 2 V (N) ; and � 2 R (N), set P (v; s0; �) 2 P (N) :
P
�
v; s0; �

�
(i) = fig[

�
j 2 Nn fig jt

�
i; j; v; s0; �

�
= t�

�
v; s0; �

�
6= +1

	
; i 2 N;

and let � (v; s0; �) be the bijection P (v; s0; �)! f1; : : : ; jP (v; s0; �)jg given by
�
�
v; s0; �

� �
P
�
v; s0; �

�
(i)
�

� �
�
v; s0; �

� �
P
�
v; s0; �

�
(j)
�

() si
�
t�
�
v; s0; �

�
; s0
�
� sj

�
t�
�
v; s0; �

�
; s0
�
;

i; j 2 N:

s0i � et�MCvi (�) = s0j � et�MCvj (�)

s0i
s0j
� et�(MCvi (�)�MCvj (�)) = 1�

ln s0i � ln s0j
�
+ t �

�
MCvi (�)�MCvj (�)

�
= 0

t =
�
�
ln s0i � ln s0j

�
MCvi (�)�MCvj (�)

=
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5.3. Solutions to di¤erential equations with discontinuous right-hand
sides: General approach

Filippov (1988, Paragraph 4) considers the following setup.3

1. Let G � Rn; n 2 N.

2. Let f : G! Rn be piecewise continuous, i.e., G consist of

1. a �nite number ` 2 N of domains Gi � G; i = 1; : : : ; `;
2. and a set M � G of measure zero, which consists of the boundary
points of the Gi; i = 1; : : : ; `; and

3. f is continuous on the inner of any Gi � G; i = 1; : : : ; `;

4. for i = 1; : : : ; `; f on Gi can be extended continuously to the boundary of
Gi; i.e., for any sequence (xk)k2N in Gi such that xk ! x 2M; the sequence
(f (xk))k2N coverges to some x 2 Rn:

5. M consists of a �nite number of hyperplanes.

From the point-valued vector �eld f : G ! Rn; one obtains the set-valued
vector �eld F : G� Rn;

F (x) =

�
ff (x)g ; x 2 GnM;
con flimxk2Gi:xk!x f (xk) ji = 1; : : : ; `; x 2 @Gig x 2M;

where con (A) and @ (A) denote the convex hull and the boundary of A � Rn
respectively.
A solution to the ODE _x = f (x) is a solution of the di¤erential inclusion

_x 2 F (x) ; i.e., an absolutely continuous function x : I ! Rn on some interval
I � R containing 0 for which _x (t) 2 F (x) almost everywhere on I:
Filippov (1988, pp. 81) presents the following results on the solutions to ODE

as above:

A. Through any point of the interior of G there passes a solution.

B. Each solution lying within a given closed bounded domain is continued on
both sides to reach the boundary of the domain.

3Actually, we restrict attention to autonomous ODE with discontinuous right-hand sides.
Further, we focus on hypersurfaces that are hyperplanes.
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5.4. Solutions to di¤erential equations with discontinuous right-hand
sides: Population dynamic

Fortunately, the ODE (5.2) and (5.3) �t the setup outlined in Section 5.3. The
domains of continuity are

�
RN+ (�)

�
�2R(N) and

�
�N
+ (�)

�
�2R(N) ; respectively; the

domains of (potential) discontinuity are�
RN+ (P ; �)

�
(P;�)2Po (N) and

�
�N
+ (P ; �)

�
(P;�)2Po (N) ;

respectively. By (4.22), (5.1), and (5.4), the functions f v and 'v are continous up
to the boundary on any of their domains of continuity. Hence by Filippov (1988,
pp. 81), we know that through any s0 2 RN++ and x0 2 �N

++ runs a solution of the
respective ODE (A). Since our ODE are autonomous, any such solution is global
(B).

Conjecture 5.1. Whenever a trajectory leavesRN++ (�), it never returns toRN++ (�).

6. Stability of population shares

6.1. General stu¤

� We are interested in (Lyapunov, asymptotically) stable population shares
vectors under the replicator dynamic (5.3).

� To deal with the possible non-uniqueness of solutions to (5.3), we suggest
the following modi�cation of stability.

� x� 2 �N is Lyapunov stable in the ODE (5.3) if every neighborhood U of
x� there is a neighborhood U0 of x�; U0 � U such that for any solution � to
(5.3), � (x0; t) 2 U for all x0 2 U0 \�N and t � 0:

� x� 2 �N is asymptotically stable in the ODE (5.3) if x� is Lyapunov stable
in the ODE (5.3) and there is some neighborhood U of x such that for all
x 2 U \�N and all solutions � of (5.3), we have

lim
t!1

� (x; t) = x�:
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6.2. Conjectures

Conjecture 6.1. If (N; v) is strictly convex then
�

1
jN j ; : : : ;

1
jN j

�
is the unique

asymptocically stable population share vector.

Conjecture 6.2. If (N; v) is strictly concave then any asymptocically stable pop-
ulation share vector lies in some domain of continuity.

Conjecture 6.3. If (N; v) is a simple game with the set of minimal winning
coalitionsM, the asymptotically stable states x̂ = (x̂1; :::; x̂n) are characterized by
minimal winning coalitions W 2 M and

x̂i =

� 1
jW j ; i 2 W
0; otherwise

The apex game discussed in the introduction corroborates this conjecture.

In ENGT, strictly dominated strategies are wielded out. We present a domi-
nance de�nition and show that we do not have a similar result in ECGT.

De�nition 6.4. Let v 2 V (N). Player i 2 N strictly dominates player j 2 N
if v (K[fig) > v (K[fjg) holds for all K � Nn fi; jg. Player i 2 N weakly
dominates player j 2 N if v (K[fig) � v (K[fjg) holds for all K � Nn fi; jg
and if there is a coalition K̂ 2 Nn fi; jg such that v

�
K̂[fig

�
> v

�
K̂[fjg

�
is

true. In that case, we also say that i weakly dominates j with strong K̂-dominance.

Note that strict and weak dominance are equivalent for n = 2.

Conjecture 6.5. A strictly dominated player does not need to vanish. A null
player does not need to vanish.

We conjecture that a strictly dominated null player vanishes. However, nei-
ther one of these two conditions are su¢ cient for driving out a player. The �rst
assertion follows from the game given by N = f1; 2g ; v (1) = 1; v (2) = 0 and
v (1; 2) = 3: Assume the initial population share vector x (0) =

�
4
5
; 1
5

�
: Player 2 is

strictly dominated but holds his ground as can be seen in �g. 6.1. Also, a weakly
dominating player (as the apex player) can vanish while the player dominated by
him does not, as we have seen in the introduction (see �g. 1.2).
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1

2
1, 2

Figure 6.1: Player 2 is dominated but does not vanish.

1

12

2

Figure 6.2: Player 1 is a dominating null player.

22



1

23

1, 3

Figure 6.3: Di¤erent non-zero shares in the long run

The second asssertion can be seen from the game for two players given by
v (1) = 0; v (2) = �1 = v (1; 2). Fig. 6.2 (with x (0) =

�
1
5
; 4
5

�
) demonstrates that

a null player (player 1 in our case) does not need to vanish.
The examples presented so far may give the impression that we cannot have

di¤erent non-zero shares in the long run. However, this is not true. Consider
N = f1; 2; 3g, v 2 V (N) given by v (1) = v (2) = v (3) = 0; v (1; 3) = 2;
v (1; 2) = v (2; 3) = 1 and v (1; 2; 3) = 3: The initial population share vector
x (0) =

�
3
4
; 1
6
; 1
12

�
yields �g. 6.3.

7. Conclusion

Our paper presents work in progress. We still need to work on the solutions to
our di¤erential equations.
With respect to future research, note that the replicator dynamics are con-

cerned with selection. Of course, mutation is the other evolutionary force to be
reckoned with. It is concerned with the change of parameters rather than the se-
lection pressures for a given set of parameters. Within our framework, mutation
can take di¤erent forms:

1. We may consider small changes of the coalition function v.

2. Other players could be added with very small sizes such that the worths for
the other players stays the same for a zero size of the new arrival.
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